
Trace and Pace: Controllable Pedestrian Animation
via Guided Trajectory Diffusion

Davis Rempe∗,1,2 Zhengyi Luo∗,1,3 Xue Bin Peng1,4 Ye Yuan1 Kris Kitani3

Karsten Kreis1 Sanja Fidler1,5,6 Or Litany1

1NVIDIA 2Stanford University 3Carnegie Mellon University 4Simon Fraser University
5University of Toronto 6Vector Institute

Figure 1. (Left) We propose TRACE, a trajectory diffusion model that enables user control through test-time guidance. (Right) Generated
trajectories are passed to a novel physics-based humanoid controller (PACER), forming a closed-loop pedestrian animation system.

Abstract

We introduce a method for generating realistic pedes-
trian trajectories and full-body animations that can be con-
trolled to meet user-defined goals. We draw on recent ad-
vances in guided diffusion modeling to achieve test-time
controllability of trajectories, which is normally only asso-
ciated with rule-based systems. Our guided diffusion model
allows users to constrain trajectories through target way-
points, speed, and specified social groups while accounting
for the surrounding environment context. This trajectory
diffusion model is integrated with a novel physics-based hu-
manoid controller to form a closed-loop, full-body pedes-
trian animation system capable of placing large crowds in
a simulated environment with varying terrains. We fur-
ther propose utilizing the value function learned during RL
training of the animation controller to guide diffusion to
produce trajectories better suited for particular scenarios
such as collision avoidance and traversing uneven terrain.
Video results are available on the project page.

1. Introduction
Synthesizing high-level human behavior, in the form

of 2D positional trajectories, is at the core of modeling
pedestrians for applications like autonomous vehicles, ur-
ban planning, and architectural design. An important fea-
ture of such synthesis is controllability – generating tra-

∗Equal contribution

jectories that meet user-defined objectives, edits, or con-
straints. For example, a user may place specific waypoints
for characters to follow, specify social groups for pedestri-
ans to travel in, or define a social distance to maintain.

Attaining controllability is straightforward for algorith-
mic or rule-based models of human behavior, since they
have built-in objectives. In the simplest case, human tra-
jectories can be determined by the shortest paths between
control points [12], but more sophisticated heuristics have
also been developed for pedestrians [3,16], crowds [24,50],
and traffic [32, 60]. Unfortunately, algorithmically gener-
ated trajectories often appear unnatural. Learning-based ap-
proaches, on the other hand, can improve naturalness by
mimicking real-world data. These methods often focus on
short-term trajectory prediction using a single forward pass
of a neural network [2, 11, 55, 69]. However, the ability to
control these models is limited to sampling from an out-
put trajectory distribution [37, 66] or using an expensive la-
tent space traversal [49]. As a result, learning-based meth-
ods can predict implausible motions such as collisions with
obstacles or between pedestrians. This motivates another
notion of controllability – maintaining realistic trajectories
during agent-agent and agent-environment interactions.

In this work, we are particularly interested in using con-
trollable pedestrian trajectory models for character anima-
tion. We envision a simple interface where a user provides
high-level objectives, such as waypoints and social groups,
and a system converts them to physics-based full-body hu-
man motion. Compared to existing kinematic motion mod-

1

https://nv-tlabs.github.io/trace-pace

els [21, 30, 46], physics-based methods have the potential
to produce high-quality motion with realistic subtle behav-
iors during transitions, obstacle avoidance, traversing un-
even terrains, etc. Although there exist physics-based ani-
mation models [13, 30, 43–45, 65], controlling their behav-
ior requires using task-specific planners that need to be re-
trained for new tasks, terrains, and character body shapes.

We develop a generative model of trajectories that is data
driven, controllable, and tightly integrated with a physics-
based animation system for full-body pedestrian simulation
(Fig. 1). Our method enables generating pedestrian trajec-
tories that are realistic and amenable to user-defined objec-
tives at test time. We use this trajectory generator as a plan-
ner for a physics-based pedestrian controller, resulting in a
closed-loop controllable pedestrian animation system.

For trajectory generation, we introduce a TRAjectory
Diffusion Model for Controllable PEdestrians (TRACE).
Inspired by recent successes in generating trajectories
through denoising [10, 22, 72], TRACE generates the fu-
ture trajectory for each pedestrian in a scene and accounts
for the surrounding context through a spatial grid of learned
map features that is queried locally during denoising. We
leverage classifier-free sampling [19] to allow training on
mixed annotations (e.g., with and without a semantic map),
which improves controllability at test time by trading off
sample diversity with compliance to conditioning. User-
controlled sampling from TRACE is achieved through test-
time guidance [8, 19, 20], which perturbs the output at each
step of denoising towards the desired objective. We extend
prior work [22] by introducing several analytical loss func-
tions for pedestrians and re-formulating trajectory guidance
to operate on clean trajectory outputs from the model [20],
improving sample quality and adherence to user objectives.

For character animation, we develop a general-purpose
Pedestrian Animation ControllER (PACER) capable of
driving physics-simulated humanoids with diverse body
types to follow trajectories from a high-level planner. We
focus on (1) motion quality: PACER learns from a small
motion database to create natural and realistic locomotion
through adversarial motion learning [44,45]; (2) terrain and
social awareness: trained in diverse terrains with other hu-
manoids, PACER learns to move through stairs, slopes, un-
even surfaces, and to avoid obstacles and other pedestrians;
(3) diverse body shapes: by training on different body types,
PACER draws on years of simulation experience to control
a wide range of characters; (4) compatibility with high-level
planners: PACER accepts 2D waypoints and can be a plug-
in model for any 2D trajectory planner.

We demonstrate a controllable pedestrian animation sys-
tem using TRACE as a high-level planner for PACER, the
low-level animator. The planner and controller operate in
a closed loop through frequent re-planning according to
simulation results. We deepen their connection by guiding

TRACE with the value function learned during RL training
of PACER to improve animation quality in varying tasks.
We evaluate TRACE on synthetic [3] and real-world pedes-
trian data [4, 29, 41], demonstrating its flexibility to user-
specified and plausibility objectives while synthesizing re-
alistic motion. Furthermore, we show that our animation
system is capable and robust with a variety of tasks, terrains,
and characters. In summary, we contribute (1) a diffusion
model for pedestrian trajectories that is readily controlled at
test time through guidance, (2) a general-purpose pedestrian
animation controller for diverse body types and terrains, and
(3) a pedestrian animation system that integrates the two to
drive simulated characters in a controllable way.

2. Related Work
Pedestrian Trajectory Prediction. Modeling high-level
pedestrian behavior has been extensively studied in the
context of motion prediction (forecasting). Approaches
range from physics and planning-based [15, 16, 62] to re-
cent learned methods [2,6,27,55,69]. We refer the reader to
the thorough survey by Rudenko et al. [52] for an overview,
and focus this discussion on controllability. Most forecast-
ing work is motivated by planning for autonomous vehi-
cles (AVs) or social robots [11] rather than controllability
or longer-term synthesis. Rule-based models for pedestri-
ans [3, 24, 50] and vehicle traffic [32, 60] can easily incor-
porate user constraints [28] making them amenable to con-
trol. However, the trajectories of these approaches are not
always human-like; methods have even been developed to
choose the best simulation method and tune parameters to
make crowd scenarios more realistic [23].

Data-driven methods produce human-like motions, but
neural network-based approaches are difficult to explicitly
control. Some works decompose forecasting into goal pre-
diction followed by trajectory prediction based on goals [7,
37]. These models offer limited control by selecting goal lo-
cations near a target or that minimizes an objective (e.g. col-
lisions) [66]. Synthesized pedestrian behavior can also be
controlled by strategically choosing a starting location [47].
STRIVE [49] showed that a VAE trajectory model can be
controlled through test-time optimization in the learned la-
tent space. Reinforcement learning (RL) agents can be con-
trolled in crowd simulations by incorporating tasks into re-
ward functions for training [26]. By varying the weights
of different rewards, the characters can be controlled to ex-
hibit one of several behaviors at test time [40]. Our method,
TRACE, trains to mimic trajectories from data and is agnos-
tic to any task: all controls are defined at test time, allowing
flexibility to new controls after training. Instead of lengthy
test-time optimization, we use guidance for control.
Controllable Character Animation. Full-body pedestrian
animation typically involves a high-level task (e.g. trajec-
tory following, obstacle avoidance) and low-level body con-

2

trol. Some methods solve both with a single network that
implicitly uses high-level planning and low-level animation.
GAMMA [71] trains a kinematic model to go to waypoints,
while PFNN [21] follows gamepad inputs. Physics-based
humanoid controllers such as AMP [45] train different mod-
els for each task, limiting their general applicability.

Two-stage methods split the task into separate high-level
planning and low-level character control, where task infor-
mation is only used by the planner. Planning can be done
with traditional A* [12], using learned trajectory predic-
tion [5], searching in a pre-trained latent space [30, 44, 48,
65], or using hierarchical RL [13, 43, 44, 46, 65]. DeepLoco
[43], Haworth et al. [13], and ASE [44] utilize hierarchical
RL to achieve impressive dynamic control for various tasks.
They require lengthy training for both low-level and high-
level controllers and often jointly train as a final step. They
must also train different planners for different tasks.

Our approach follows the two-stage paradigm, with the
distinction that both our high-level (TRACE) and low-
level (PACER) models consume task information for pedes-
trian navigation: through test-time guidance and map-
conditioned path following, respectively. TRACE and
PACER are unaware of each other at training time, yet can
be tightly integrated in a closed loop: trace-pace-retrace.

Diffusion Models and Guidance. Diffusion models
have shown success in generating images [18, 39, 61],
videos [17], and point clouds [70]. Guidance has been
used for test-time control in several ways: classifier [8] and
classifier-free [19] guidance reinforce input conditioning,
while reconstruction guidance [20] has been used for co-
herent video generation. Gu et al. [10] adapt the diffusion
framework for short-term pedestrian trajectory forecasting
conditioned on past trajectories. Diffuser [22] generates tra-
jectories for planning and control in robotics applications
with test-time guidance. Closest to ours is the concurrent
work of CTG [72], which builds on Diffuser to develop
a controllable vehicle traffic model, focusing on following
formalized traffic rules like speed limits. Our method con-
tains several key differences: we encode map conditioning
into an expressive feature grid queried in denoising, we use
classifier-free sampling to enable multi-dataset training and
test-time flexibility, we re-formulate guidance to operate on
clean model outputs, and we link with a low-level animation
model using value function guidance.

3. Method

To model high-level pedestrian behavior, we first intro-
duce the controllable trajectory diffusion model (TRACE).
In Sec. 3.2, we detail our low-level physics-based pedes-
trian controller, PACER, and in Sec. 3.3 how they can be
combined into an end-to-end animation system.

3.1. Controllable Trajectory Diffusion

Problem Setting. Our goal is to learn high-level pedestrian
behavior in a way that can be controlled at test time. For
pedestrian animation, we focus on two types of control: (1)
user specification, e.g., goal waypoints, social distance, and
social groups, and (2) physical plausibility, e.g., avoiding
collisions with obstacles or between pedestrians.

We formulate synthesizing pedestrian behavior as an
agent-centric trajectory forecasting problem. At each time
step, the model outputs a future trajectory plan for a tar-
get ego agent conditioned on that agent’s past, the past tra-
jectories of all neighboring agents, and the semantic map
context. Formally, at timestep t we want the future state tra-
jectory τ s = [st+1 st+2 . . . st+Tf

] over the next Tf
steps where the state s = [x y θ v]T includes the 2D
position (x, y), heading angle θ, and speed v. We assume
this state trajectory is actually the result of a sequence of
actions [72] defined as τ a = [at+1 at+2 . . . at+Tf

]

where each action a = [v̇ θ̇]T contains the acceleration v̇
and yaw rate θ̇. The state trajectory can be recovered from
the initial state and action trajectory as τ s = f(st, τ a) us-
ing a given dynamics model f . The full state-action tra-
jectory is then denoted as τ = [τ s; τ a]. To predict the
future trajectory, the model receives as input the past state
trajectory of the ego pedestrian xego = [st−Tp

. . . st]
along with the past trajectories of N neighboring pedestri-
ans Xneigh = {xi}Ni=1. It also gets a crop of the rasterized
semantic map M ∈ RH×W×C in the local frame of the
ego pedestrian at time t. These inputs are summarized as
the conditioning context C = {xego, Xneigh,M}.

Our key idea is to train a diffusion model to condition-
ally generate trajectories, which can be guided at test time
to enable controllability. For simplicity, the following for-
mulation uses the full trajectory notation τ , but in prac-
tice, the state trajectory is always a result of actions, i.e.,
diffusion/denoising are on τ a which determines the states
through f . Next, we summarize our diffusion framework,
leaving the details to the supplementary material.

3.1.1 Trajectory Diffusion Model
We build on Diffuser [22] and generate trajectories through
iterative denoising, which is learned as the reverse of a pre-
defined diffusion process [18, 57]. Starting from a clean fu-
ture trajectory τ 0 ∼ q(τ 0) sampled from the data distri-
bution, the forward noising process produces a sequence of
progressively noisier trajectories (τ 1, . . . , τ k, . . . , τK) by
adding Gaussian noise at each process step k:

q(τ 1:K | τ 0) :=

K∏
k=1

q(τ k | τ k−1)

q(τ k | τ k−1) := N (τ k;
√

1− βkτ
k−1, βkI)

(1)

where βk is the variance at each step of a fixed schedule,
and with a large enough K we get q(τK) ≈ N (τK ;0, I).

3

Figure 2. Trajectory diffusion model (TRACE). Future trajectory denoising is conditioned on past and neighbor motion by adding processed
features to intermediate U-Net features. Map conditioning is provided through a feature grid queried along the noisy input trajectory.

TRACE learns the reverse of this process so that the sam-
pled noise can be denoised into plausible trajectories. Each
step of this reverse process is conditioned on C:

pϕ(τ
k−1 | τ k, C) := N (τ k−1;µϕ(τ

k, k, C),Σk) (2)

where ϕ are model parameters and Σk is from a fixed sched-
ule. TRACE learns to parameterize the mean of the Gaus-
sian distribution at each step of the denoising process.
Training and Classifier-Free Sampling. Importantly for
guidance, the network does not directly output µ. Instead,
at every step it learns to predict the final clean trajectory τ 0,
which is then used to compute µ [39]. Training supervises
this network output τ̂ 0 with ground truth future trajectories
(i.e. denoising score matching [18, 58, 63]):

L = Eϵ,k,τ0,C

[
||τ 0 − τ̂ 0||2

]
(3)

where τ 0 and C are sampled from the training dataset, k ∼
U{1, 2, . . . ,K} is the step index, and ϵ ∼ N (0, I) is used
to corrupt τ 0 to give the noisy input trajectory τ k.

Our training procedure allows the use of classifier-free
sampling1 at test time, which has been shown to improve
compliance to conditioning in diffusion models [19]. We
simultaneously train both a conditional model µϕ(τ

k, k, C)

and unconditional model µϕ(τ
k, k) by randomly dropping

out conditioning during training. At test time, predictions
from both models are combined with weight w as:

ϵ̃ϕ = ϵϕ(τ
k, k, C) + w

(
ϵϕ(τ

k, k, C)− ϵϕ(τ
k, k)

)
(4)

where ϵϕ is the model’s prediction of how much noise was
added to the clean trajectory to produce the input τ k; it is
straightforward to compute from µϕ [39].

Note that w>0 and w<0 increase and decrease the effect
of conditioning, respectively, while w=0 and w=−1 result
in the purely conditional or unconditional model, respec-
tively. This flexibility allows a user to trade off respecting

1we refer to it as “sampling” instead of the common term “guid-
ance” [19] to avoid confusion with the guidance introduced in Sec. 3.1.2

conditioning with trajectory diversity, which benefits con-
trollability (see Sec. 4.2). This approach also enables train-
ing on multiple distinct datasets with varying annotations:
conditioning is already being dropped out randomly, so it is
easy to use mixed data with subsets of the full conditioning.
Since there are pedestrian datasets with diverse motions but
no semantic maps [29, 41], and others with limited motions
but detailed maps [4], we find mixed training is beneficial
to boost diversity and controllability (see Sec. 4.2).
Architecture. As shown in Fig. 2, TRACE uses a U-Net
similar to [22] that has proven effective for trajectories. The
input trajectory τ k at step k is processed by a sequence of
1D temporal convolutional blocks that progressively down
and upsample the sequence in time, leveraging skip con-
nections. A key challenge is how to condition the U-Net
on C to predict trajectories that comply with the map and
other pedestrians. To incorporate step k, ego past xego, and
neighbor past Xneigh, we use a common approach [20, 22]
that extracts a single conditioning feature and adds it to the
intermediate trajectory features within each convolutional
block. For the map M, we encode with a 2D convolu-
tional network into a feature grid, where each pixel contains
a high-dimensional feature. At step k of denoising, each 2D
position (x, y) ∈ τ k is queried by interpolating into the grid
to give a feature trajectory, which is concatenated to τ k and
becomes the U-Net input. Intuitively, this allows learning a
localized representation that can benefit subtle map interac-
tions such as obstacle avoidance.

3.1.2 Controllability through Clean Guidance

After training TRACE to generate realistic trajectories, con-
trollability is implemented through test-time guidance. In-
tuitively, guidance nudges the sampled trajectory at each
step of denoising towards a desired outcome. Let J (τ) be
a guidance loss function measuring how much a trajectory
τ violates a user objective. This may be learned [22] or an
analytical differentiable function [72]. Guidance uses the
gradient of J to perturb the predicted mean from the model
at each denoising step such that the right side of Eq. (2)

4

Figure 3. Pipeline: Pedestrian Animation Controller (PACER).

becomes N (τ k−1; µ̃ϕ(τ
k, k, C),Σk) where µ̃ is the per-

turbed (guided) mean. Prior work [22, 72] directly perturbs
the noisy network-predicted mean with

µ̃ = µ− αΣk∇µJ (µ) (5)

where α determines the guidance strength. Note that Eq. (5)
evaluates J at the noisy mean, so learned loss functions
must be trained at varying noise levels and analytic loss
functions may suffer from numerical issues.

To avoid this, we build upon “reconstruction guidance”,
which operates on the clean model prediction τ̂ 0 [20]. We
extend the guidance formulation introduced in [20] for tem-
poral video upsampling to work with arbitrary loss func-
tions. At each denoising step with input τ k, we first perturb
the clean trajectory predicted from the network τ̂ 0 with

τ̃ 0 = τ̂ 0 − αΣk∇τkJ (τ̂ 0), (6)

then compute µ̃ in the same way as we would in Eq. (2), i.e.,
as if τ̃ 0 were the output of the network. Note that the gra-
dient is evaluated wrt the noisy input trajectory τ k rather
than the clean τ̂ 0, requiring backpropagation through the
denoising model. We formulate several analytical guidance
objectives like waypoint reaching, obstacle avoidance, col-
lision avoidance, and social groups (see Sec. 4.1, 4.2). A
learned RL value function can also be used (Sec. 4.3).

3.2. Physics-Based Pedestrian Animation

To enable full-body pedestrian simulation, we design the
Pedestrian Animation ControllER (PACER) to execute the
2D trajectories generated by TRACE in a physics simulator.
Background: Goal-Conditioned RL. Our framework
(Fig. 3) follows the general goal-conditioned reinforce-
ment learning framework, where a goal-conditioned policy
πPACER is trained to follow 2D target trajectories specified
by τ s. The task is formulated as a Markov Decision Pro-
cess (MDP) defined by a tuple M = ⟨S,A, T , R, γ⟩ of
states, actions, transition dynamics, reward function, and
discount factor. The state S, transition dynamics T , and re-
ward R are calculated by the environment based on the cur-
rent simulation and goal, while the action A is computed
by the policy πPACER. The policy’s objective is to maximize

the discounted return E
[∑T

t=1 γ
t−1rt

]
where rt is the re-

ward per timestep. We utilize Proximal Policy Optimization
(PPO) [56] to find the optimal control policy πPACER.

Terrain, Social, and Body Awareness. To create a con-
troller that can simulate crowds in realistic 3D scenes
(e.g. scans, neural reconstructions, or artist-created meshes
(Fig. 1)), our humanoid must be terrain aware, socially
aware of other agents, and support diverse body types. We
use a humanoid model that conforms to the kinematic struc-
ture of SMPL [31], and is automatically generated using
a procedure similar to [33, 34, 68]. Our control policy
πPACER(at|ht,ot,β, τ s) is conditioned on the state of the
simulated character ht, environmental features ot, body
type β, and goal trajectory τ s. The environment input is
a rasterized local height and velocity map of size ot ∈
R64×64×3, which gives agents crucial information about
their surroundings. To allow for social awareness, nearby
humanoids are represented as a cuboid and rendered on the
global height map. In this way, each humanoid views other
people as dynamic obstacles to avoid. Obstacle and inter-
personal avoidance are learned by using obstacle collision
as a termination condition. By conditioning and training
with different body parameters β our policy learns to adapt
to characters with diverse morphologies.

Realistic Motion through Adversarial Learning. To learn
the optimal control policy πPACER that (1) follows a 2D tra-
jectory closely and (2) creates realistic pedestrian motions,
we follow Adversarial Motion Prior (AMP) [45]. AMP uses
a motion discriminator to encourage the policy to generate
motions that are similar to the movement patterns contained
in a dataset of motion clips recorded by human actors. The
discriminator D(ht−10:t,at) is then used to specify a mo-
tion style reward ramp

t for training the policy. The style
reward is combined with a trajectory following reward rτt
and an energy penalty renergy

t [9] to produce the total reward
rt = ramp

t + rτt + renergy
t . To mitigate artifacts arising from

asymmetric gaits, such as limping, we utilize the motion-
symmetry loss proposed by [67]:

Lsym(θ) =∥πPACER(ht,ot,β, τ s)−

Φa(πPACER(Φs(ht,ot,β, τ s)))∥2,
(7)

where Φs and Φa mirror the state and action along the char-
acter’s sagittal plane. This loss encourages the policy to
produce more symmetric motions, leading to natural gaits.
During training, random terrains are generated following
the procedure used in [53]. We create stairs, slopes, un-
even terrains, and obstacles consisting of random polygons.
Character morphology is also randomized by sampling a
gender and body type from the AMASS dataset [35]. The
policy and discriminator are then conditioned on the SMPL
gender and body shape β parameters. More details are
available in the supplementary material.

5

Figure 4. Guidance results on ORCA-Maps. For VAE and
TRACE, 20 samples are visualized for each pedestrian (the boxes)
along with the final trajectory chosen via filtering which is bolded.

3.3. Controllable Pedestrian Animation System

The high-level trajectory planning from TRACE is com-
bined with the low-level character control from PACER to
create an end-to-end pedestrian animation system. The two
components are trained independently, but at runtime they
operate in a closed feedback loop: PACER follows planned
trajectories for 2s before TRACE re-planning, taking past
character motion from PACER as input. By combining ter-
rain and social awareness of PACER with collision avoid-
ance guidance, both high and low-level systems are task-
aware and work in tandem to prevent collisions and falls.
Value Function as Guidance. To enable tighter two-way
coupling between TRACE and PACER, in Sec. 4.3 we ex-
plore using the value function learned during RL training
of PACER to guide trajectory diffusion. The value function
predicts expected future rewards and is aware of body pose
and surrounding terrain and agents. Using the value func-
tion to guide denoising encourages TRACE to produce tra-
jectories that are easier to follow and better suited to the cur-
rent terrain (which TRACE is unaware of otherwise). Un-
like Diffuser [22], which requires training a reward function
with samples from the diffusion model at varying noise lev-
els, our guidance (Eq. (6)) operates on clean trajectories so
we can use the value function directly from RL training.

4. Experiments
We first demonstrate the controllability of TRACE when

trained on synthetic (Sec. 4.1) and real-world (Sec. 4.2)
pedestrian data. Sec. 4.3 evaluates our full animation sys-
tem on several tasks and terrains. Video results are pro-
vided in the supplementary material.
Implementation Details. TRACE is trained to predict 5s
of future motion from 3s of past motion (both at 10Hz),
and uses K=100 diffusion steps. During training, map and
neighbor conditioning inputs are independently dropped

with 10% probability. At test time, we sample (and guide)
multiple future trajectories for each pedestrian in a scene
and choose one with the lowest guidance loss, which we re-
fer to as filtering. PACER operates at 30Hz; we randomly
sample terrain, body type, and procedural 2D trajectories
during training and use a dataset of locomotion sequences
from AMASS [35]. All physics simulations are performed
using NVIDIA’s Isaac Gym simulator [36].
Datasets. The ORCA dataset (Sec. 4.1) contains syn-
thetic trajectory data from 10s scenes generated using the
ORCA crowd simulator [3]. Up to 20 agents are placed
in a 15m×15m environment with ≤20 static primitive ob-
stacles. Agent placement and goal velocity, along with
obstacle placement and scale, are randomized per scene.
The dataset contains two distinct subsets: ORCA-Maps has
many obstacles but few agents, while ORCA-Interact has no
obstacles (i.e. no map annotations) but many agents.

For real-world data (Sec. 4.2), we use ETH/UCY and
nuScenes. ETH/UCY [29, 41] is a common trajectory fore-
casting benchmark that contains scenes with dense crowds
and interesting pedestrian dynamics but does not have se-
mantic maps. nuScenes [4] contains 20s driving scenes
in common street settings. We convert the pedestrian
bounding-box annotations to 2D trajectories and use them
for training and evaluation. Detailed semantic maps are also
annotated with layers for roads, crosswalks, and sidewalks.
Metrics. We care about trajectory plausibility and meeting
user controls. Controllability is evaluated with a Guidance
Error that depends on the task: e.g., for avoidance objec-
tives this is collision rate, while the waypoint error measures
the minimum distance from the trajectory. Obstacle and
Agent Collision Rates measure the frequency of collisions.
Realism is measured at the dataset or trajectory level by
(1) computing the Earth Mover’s Distance (EMD) between
the generated and ground truth test-set histograms of tra-
jectory statistics (e.g. velocity, longitudinal/lateral accelera-
tion) [66], or (2) measuring the mean accelerations of each
trajectory, assuming pedestrians generally move smoothly.

4.1. Augmenting Crowd Simulation

We first evaluate TRACE trained on ORCA-Maps and
ORCA-Interact. These provide a clean test bed for compar-
isons since there is a clear definition of correct pedestrian
behavior – no obstacle or agent collisions are present in the
data. All methods operate in an open loop by predicting a
single 5s future for each pedestrian. This way, compound-
ing errors inherent to closed-loop operation are not a factor.

Results for single and multi-objective guidance on the
ORCA-Maps test set are shown in Tab. 1. TRACE is com-
pared to a VAE baseline [49] adapted to our setup, which
achieves controllability through test-time latent optimiza-
tion. This is a strong baseline that generally works well,
but requires expensive optimization at test time. We also

6

Guidance Collision Rate Realism (EMD)
Guide Method Error Obstacle Agent Vel Lon Acc Lat Acc

None VAE [49] – 0.076 0.118 0.038 0.039 0.040
TRACE – 0.050 0.132 0.029 0.008 0.009

Obstacle VAE [49] 0.018 0.018 0.116 0.040 0.036 0.039
Avoid TRACE-Filter 0.018 0.018 0.123 0.019 0.011 0.015

TRACE-Noisy 0.015 0.015 0.125 0.021 0.012 0.017
TRACE 0.014 0.014 0.124 0.020 0.011 0.017

Agent VAE [49] 0.010 0.075 0.010 0.041 0.038 0.039
Avoid TRACE-Filter 0.049 0.050 0.049 0.031 0.012 0.013

TRACE-Noisy 0.000 0.056 0.000 0.035 0.013 0.012
TRACE 0.000 0.058 0.000 0.025 0.010 0.012

Waypoint VAE [49] 0.078 0.051 0.092 0.070 0.031 0.033
TRACE-Filter 0.333 0.046 0.112 0.044 0.013 0.013
TRACE-Noisy 0.129 0.052 0.110 0.067 0.038 0.033
TRACE 0.105 0.048 0.093 0.057 0.013 0.014

Waypoint VAE [49] 0.207 0.021 0.015 0.053 0.032 0.032
& Obs Avoid TRACE-Filter 0.527 0.023 0.096 0.025 0.014 0.016
& Agt Avoid TRACE-Noisy 0.236 0.022 0.017 0.057 0.025 0.022

TRACE 0.211 0.021 0.009 0.036 0.007 0.009

Table 1. Guidance evaluation on ORCA-Maps dataset. TRACE
using full diffusion guidance improves upon VAE latent optimiza-
tion and selective sampling (TRACE-Filter) in terms of meeting
objectives, while maintaining strong realism.

Guidance Realism (Mean)
Guide Method Train Data w Error Lon Acc Lat Acc

Waypoint VAE [49] Mixed – 0.340 0.193 0.172
TRACE nuScenes -0.5 0.421 0.177 0.168

Mixed 0.0 0.551 0.159 0.145
Mixed -0.5 0.366 0.140 0.132

Waypoint VAE [49] Mixed – 0.962 0.443 0.441
perturbed TRACE nuScenes -0.5 0.977 0.239 0.238

Mixed 0.0 1.129 0.233 0.218
Mixed -0.5 0.802 0.212 0.204

Social VAE [49] Mixed – 0.297 0.109 0.104
groups TRACE nuScenes -0.5 0.287 0.155 0.158

Mixed 0.0 0.244 0.110 0.101
Mixed -0.5 0.245 0.094 0.087

Table 2. Guidance evaluation on nuScenes. Training on mixed
data and using w<0 for classifier-free sampling are important to
achieve controllability for out-of-distribution objectives.

compare to two ablations: TRACE-Filter samples from the
diffusion model without guidance and chooses the best sam-
ple according to the guidance loss (similar to [66]), while
TRACE-Noisy uses the guidance formulated in Eq. (5) from
prior works [22, 72]. Models are trained on the combined
dataset of ORCA-Maps (with map annotations) and ORCA-
Interact (no map annotations). The guidance losses are:
None samples randomly with no guidance; Obstacle avoid
discourages collisions between map obstacles and pedes-
trian bounding boxes; Agent avoid discourages collisions
between pedestrians by denoising all their futures in a scene
jointly; Waypoint encourages a trajectory to pass through
a goal location at any point in the planning horizon. For
this experiment, the waypoint is set as the position of each
pedestrian at 4s into the future in the ground truth data.
These are in-distribution objectives, since they reinforce be-
havior already observed in the ground truth data.

In Tab. 1, TRACE successfully achieves all objectives
through the proposed guidance. It is competitive or bet-
ter than the VAE optimization in terms of guidance, while
maintaining velocity and acceleration distributions closer to

Figure 5. nuScenes results demonstrating flexibility of TRACE.
(a) Using mixed training and w=−0.5 is best for noisy waypoints.
(b) Social group guidance encourages sets of pedestrians to stay
close. (c) Mixed training (ETH/UCY+nuScenes) learns a more
diverse distribution as demonstrated by unconditional sampling.

ground truth as indicated by Realism. Fig. 4 shows that
random samples from the VAE contain collisions, and us-
ing latent optimization for controllability gives similar lo-
cal minima across samples thereby limiting diversity com-
pared to TRACE. Finally, using our proposed clean guid-
ance (Eq. (6)) instead of the noisy version produces consis-
tently better results in guidance and realism.

4.2. Real-world Data Evaluation

We next evaluate controllability when trained on real-
world data, and focus on out-of-distribution (OOD) guid-
ance objectives to emphasize the flexibility of our approach.
In this experiment, methods operate in a closed loop: pedes-
trians are rolled out for 10s and re-plan at 1Hz. Results on
a held out nuScenes split are shown in Tab. 2. We com-
pare TRACE trained on mixed data (ETH/UCY+nuScenes),
after training on nuScenes only, and using two differ-
ent classifier-free sampling weights w. Along with in-
distribution Waypoint (now at 9s into the future), two addi-
tional objectives are evaluated: Waypoint perturbed uses
a noisily perturbed ground truth future position (at 9s), re-
quiring pedestrians to go off sidewalks or into streets to
reach the goal; Social groups specifies groups of agents to
stay close and travel together. Groups are set heuristically
based on spatial proximity and velocity at initialization.

In Tab. 2, we observe that OOD flexibility requires (1)
training on mixed data, and (2) classifier-free sampling.
Since nuScenes data is less diverse (people tend to follow
the sidewalk), TRACE trained on just nuScenes struggles

7

Figure 6. Our animation system enables avoiding obstacles, meeting goals, traversing variable terrains, and large crowds.

Fail Traj Follow Discrim
Terrain Guide Rate Error Reward

Random Procedural 0.133 0.680 1.950
None 0.093 0.104 1.887
Waypoint 0.107 0.111 2.113

Obstacles Procedural 0.307 0.948 2.278
None 0.125 0.093 2.512
Obs Avoid 0.063 0.089 2.521

Flat Procedural 0.127 0.371 2.320
(Crowd) None 0.087 0.082 2.374

Agt Avoid 0.013 0.071 2.402

Table 3. Closed-loop animation results. Our system successfully
follows waypoints and avoids collisions in a variety of terrains,
and additional guidance improves performance.

to hit perturbed waypoints. Though the VAE is trained on
mixed data, it struggles to produce diverse dynamics on the
nuScenes maps to achieve OOD objectives, even though it
uses 200 optimization steps (2× more than the diffusion
steps K=100 in TRACE). TRACE reaches OOD objec-
tives using classifier-free sampling with w=−0.5 to down-
weight the conditioning of the semantic map and leverage
diverse trajectories learned from ETH/UCY. The flexibility
of TRACE is further highlighted in Fig. 5.

4.3. Controllable Pedestrian Animation

Finally, we demonstrate our full controllable pedestrian
animation system. TRACE is trained on ORCA and used
as a planner for the pre-trained PACER without any fine-
tuning. We evaluate the animations by: Fail Rate measures
the fraction of agents that fall down or collide with an ob-
stacle or other agent, Trajectory Following Error measures
the average deviation of the character from TRACE’s plan,
and Discriminator Reward is the mean reward returned by
the adversarial motion prior used to train PACER, which
measures how human-like a generated motion appears.

Tab. 3 evaluates the animations from our system using
TRACE with and without guidance in various settings: Ran-
dom is an assortment of smooth and rough slopes and stairs
with varying difficulties, Obstacles is a flat terrain with
large obstacles, and Flat is a flat terrain with pedestrians
spawned in a crowd of 30. For each setting, 600 rollouts of
10s are simulated across 30 characters with random bodies
from AMASS [35]. To put the difficulty of environments
and discriminator rewards in context, we also include met-
rics when using the (terrain and obstacle unaware) Proce-

Guide Waypoint Fail Traj Follow Discrim
Terrain Waypoint Value Error Rate Error Reward

Random
√

0.541 0.107 0.111 2.113√ √
0.481 0.100 0.112 2.162

Obstacles
√

1.065 0.220 0.138 2.552√ √
0.929 0.178 0.113 2.609

Flat
√

0.248 0.063 0.084 2.555
(Crowd)

√ √
0.175 0.053 0.084 2.607

Table 4. Using the value function learned in RL training as guid-
ance improves quality of trajectory following and robustness to
varying terrains, obstacles, and other agents.

dural trajectory generation method used to train PACER.
Our combined system performs well in the physically-

simulated environment with TRACE providing easy-to-
follow trajectories resulting in high-quality animations from
PACER, as evaluated by the discriminator. Diffusion guid-
ance can further improve failure rates, especially for avoid-
ing agent collisions in dense crowds. Fig. 6 shows some
qualitative applications of our animation system and we
highly encourage viewing the supplementary video results
to qualitatively evaluate the motion quality. Tab. 4 shows
the effect of using the learned value function from train-
ing PACER as a guidance loss for TRACE. In each set-
ting, adding value guidance in addition to waypoint guid-
ance makes trajectories easier to follow, reduces failures,
and improves the discriminator reward. As a result, way-
point guidance error also improves.

5. Discussion
We have introduced a controllable trajectory diffusion

model, a robust physics-based humanoid controller, and an
end-to-end animation system that combines the two. This
represents an exciting step in being able to control the high-
level behavior of learned pedestrian models, and opens sev-
eral directions for future work. First is improving the ef-
ficiency of sampling from trajectory diffusion models to
make them real-time: TRACE currently takes 1-3s to sam-
ple for a single character, depending on the guidance used
(see the supplement for full analysis). Recent work in dif-
fusion model distillation [38] offers a potential solution. In
addition to high-level motion controllability, exploring how
diffusion models can be extended to low-level full-body
character control is an interesting next step.
Acknowledgments. Davis Rempe was supported by an NVIDIA
Graduate Fellowship. The authors thank Ziyuan Zhong and the AV
Research Group for helpful discussions on trajectory diffusion.

8

References
[1] Principles of robot autonomy i, lecture 1 course notes:

Mobile robot kinematics. https://stanfordasl.
github.io/aa274a/pdfs/notes/lecture1.
pdf. Accessed: 2022-11-15. 12

[2] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan,
Alexandre Robicquet, Li Fei-Fei, and Silvio Savarese. So-
cial lstm: Human trajectory prediction in crowded spaces. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 961–971, 2016. 1, 2

[3] Jur van den Berg, Stephen J Guy, Ming Lin, and Di-
nesh Manocha. Reciprocal n-body collision avoidance.
In Robotics Research: The 14th International Symposium
(ISRR), pages 3–19. Springer, 2011. 1, 2, 6

[4] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-
modal dataset for autonomous driving. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 11621–11631, 2020. 2, 4, 6, 17

[5] Zhe Cao, Hang Gao, Karttikeya Mangalam, Qi-Zhi Cai,
Minh Vo, and Jitendra Malik. Long-term human motion
prediction with scene context. In European Conference on
Computer Vision, pages 387–404. Springer, 2020. 3

[6] Yuning Chai, Benjamin Sapp, Mayank Bansal, and Dragomir
Anguelov. Multipath: Multiple probabilistic anchor trajec-
tory hypotheses for behavior prediction. In Conference on
Robot Learning (CoRL), pages 86–99. PMLR, 2020. 2

[7] Patrick Dendorfer, Aljosa Osep, and Laura Leal-Taixé. Goal-
gan: Multimodal trajectory prediction based on goal position
estimation. In Proceedings of the Asian Conference on Com-
puter Vision, 2020. 2

[8] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. Advances in Neural Informa-
tion Processing Systems, 34:8780–8794, 2021. 2, 3

[9] Zipeng Fu, Xuxin Cheng, and Deepak Pathak. Deep whole-
body control: Learning a unified policy for manipulation and
locomotion. ArXiv, abs/2210.10044, 2022. 5

[10] Tianpei Gu, Guangyi Chen, Junlong Li, Chunze Lin, Yong-
ming Rao, Jie Zhou, and Jiwen Lu. Stochastic trajectory
prediction via motion indeterminacy diffusion. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 17113–17122, 2022. 2, 3

[11] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese,
and Alexandre Alahi. Social gan: Socially acceptable tra-
jectories with generative adversarial networks. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 2255–2264, 2018. 1, 2

[12] Mohamed Hassan, Duygu Ceylan, Ruben Villegas, Jun
Saito, Jimei Yang, Yi Zhou, and Michael J Black. Stochas-
tic scene-aware motion prediction. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 11374–11384, 2021. 1, 3

[13] M. Brandon Haworth, Glen Berseth, Seonghyeon Moon, Pet-
ros Faloutsos, and Mubbasir Kapadia. Deep integration of
physical humanoid control and crowd navigation. Proceed-

ings of the 13th ACM SIGGRAPH Conference on Motion,
Interaction and Games, 2020. 2, 3

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 13

[15] Dirk Helbing, Illés Farkas, and Tamas Vicsek. Simulating
dynamical features of escape panic. Nature, 407(6803):487–
490, 2000. 2

[16] Dirk Helbing and Peter Molnar. Social force model for
pedestrian dynamics. Physical review E, 51(5):4282, 1995.
1, 2

[17] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang,
Ruiqi Gao, Alexey Gritsenko, Diederik P Kingma, Ben
Poole, Mohammad Norouzi, David J Fleet, et al. Imagen
video: High definition video generation with diffusion mod-
els. arXiv preprint arXiv:2210.02303, 2022. 3

[18] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. Advances in Neural Information
Processing Systems, 33:6840–6851, 2020. 3, 4

[19] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. arXiv preprint arXiv:2207.12598, 2022. 2, 3, 4

[20] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William
Chan, Mohammad Norouzi, and David J Fleet. Video dif-
fusion models. arXiv preprint arXiv:2204.03458, 2022. 2, 3,
4, 5

[21] Daniel Holden, Taku Komura, and Jun Saito. Phase-
functioned neural networks for character control. ACM
Transactions on Graphics (TOG), 36(4):1–13, 2017. 2, 3

[22] Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey
Levine. Planning with diffusion for flexible behavior synthe-
sis. International Conference on Machine Learning (ICML),
2022. 2, 3, 4, 5, 6, 7, 12

[23] Ioannis Karamouzas, Nick Sohre, Ran Hu, and Stephen J
Guy. Crowd space: a predictive crowd analysis technique.
ACM Transactions on Graphics (TOG), 37(6):1–14, 2018. 2

[24] Jongmin Kim, Yeongho Seol, Taesoo Kwon, and Jehee
Lee. Interactive manipulation of large-scale crowd anima-
tion. ACM Transactions on Graphics (TOG), 33(4):1–10,
2014. 1, 2

[25] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 13, 18

[26] Jaedong Lee, Jungdam Won, and Jehee Lee. Crowd simula-
tion by deep reinforcement learning. In Proceedings of the
11th Annual International Conference on Motion, Interac-
tion, and Games, pages 1–7, 2018. 2

[27] Namhoon Lee, Wongun Choi, Paul Vernaza, Christopher B
Choy, Philip HS Torr, and Manmohan Chandraker. Desire:
Distant future prediction in dynamic scenes with interacting
agents. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 336–345, 2017. 2

[28] Marilena Lemonari, Rafael Blanco, Panayiotis Charalam-
bous, Nuria Pelechano, Marios Avraamides, Julien Pettré,
and Yiorgos Chrysanthou. Authoring virtual crowds: A sur-
vey. In Computer Graphics Forum, volume 41, pages 677–
701. Wiley Online Library, 2022. 2

9

https://stanfordasl.github.io/aa274a/pdfs/notes/lecture1.pdf
https://stanfordasl.github.io/aa274a/pdfs/notes/lecture1.pdf
https://stanfordasl.github.io/aa274a/pdfs/notes/lecture1.pdf

[29] Alon Lerner, Yiorgos Chrysanthou, and Dani Lischinski.
Crowds by example. In Computer graphics forum, vol-
ume 26, pages 655–664. Wiley Online Library, 2007. 2, 4,
6, 17

[30] Hung Yu Ling, Fabio Zinno, George Cheng, and Michiel Van
De Panne. Character controllers using motion vaes. ACM
Transactions on Graphics (TOG), 39(4):40–1, 2020. 2, 3

[31] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard
Pons-Moll, and Michael J. Black. Smpl: a skinned multi-
person linear model. ACM Trans. Graph., 34:248:1–248:16,
2015. 5

[32] Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz,
Jakob Erdmann, Yun-Pang Flötteröd, Robert Hilbrich, Leon-
hard Lücken, Johannes Rummel, Peter Wagner, and Eva-
marie Wießner. Microscopic traffic simulation using sumo.
In 2018 21st international conference on intelligent trans-
portation systems (ITSC), pages 2575–2582. IEEE, 2018. 1,
2

[33] Zhengyi Luo, Ryo Hachiuma, Ye Yuan, and Kris Kitani.
Dynamics-regulated kinematic policy for egocentric pose es-
timation. In Advances in Neural Information Processing Sys-
tems, 2021. 5

[34] Zhengyi Luo, Shun Iwase, Ye Yuan, and Kris Kitani. Em-
bodied scene-aware human pose estimation. In Advances in
Neural Information Processing Systems, 2022. 5

[35] Naureen Mahmood, N. Ghorbani, N. Troje, Gerard Pons-
Moll, and Michael J. Black. Amass: Archive of motion
capture as surface shapes. 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 5441–5450,
2019. 5, 6, 8, 16

[36] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo,
Michelle Lu, Kier Storey, Miles Macklin, David Hoeller,
Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel
State. Isaac gym: High performance gpu-based physics sim-
ulation for robot learning, 2021. 6

[37] Karttikeya Mangalam, Yang An, Harshayu Girase, and Jiten-
dra Malik. From goals, waypoints & paths to long term hu-
man trajectory forecasting. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 15233–
15242, 2021. 1, 2

[38] Chenlin Meng, Ruiqi Gao, Diederik P Kingma, Stefano Er-
mon, Jonathan Ho, and Tim Salimans. On distillation of
guided diffusion models. arXiv preprint arXiv:2210.03142,
2022. 8, 21

[39] Alexander Quinn Nichol and Prafulla Dhariwal. Improved
denoising diffusion probabilistic models. In International
Conference on Machine Learning, pages 8162–8171. PMLR,
2021. 3, 4, 12

[40] Andreas Panayiotou, Theodoros Kyriakou, Marilena
Lemonari, Yiorgos Chrysanthou, and Panayiotis Char-
alambous. Ccp: Configurable crowd profiles. In ACM
SIGGRAPH 2022 Conference Proceedings, pages 1–10,
2022. 2

[41] Stefano Pellegrini, Andreas Ess, Konrad Schindler, and Luc
Van Gool. You’ll never walk alone: Modeling social behav-
ior for multi-target tracking. In 2009 IEEE 12th international
conference on computer vision, pages 261–268. IEEE, 2009.
2, 4, 6, 17

[42] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel
van de Panne. Deepmimic: Example-guided deep reinforce-
ment learning of physics-based character skills. ACM Trans.
Graph., 37(4):143:1–143:14, July 2018. 16, 17

[43] Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel
van de Panne. Deeploco: Dynamic locomotion skills using
hierarchical deep reinforcement learning. ACM Transactions
on Graphics (Proc. SIGGRAPH 2017), 36(4), 2017. 2, 3

[44] Xue Bin Peng, Yunrong Guo, Lina Halper, Sergey Levine,
and Sanja Fidler. Ase: Large-scale reusable adversarial skill
embeddings for physically simulated characters. ACM Trans.
Graph., 41(4), July 2022. 2, 3

[45] Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and
Angjoo Kanazawa. Amp: Adversarial motion priors for styl-
ized physics-based character control. ACM Trans. Graph.,
40(4), July 2021. 2, 3, 5, 16

[46] Maria Priisalu, Ciprian Paduraru, Aleksis Pirinen, and Cris-
tian Sminchisescu. Semantic synthesis of pedestrian locomo-
tion. In Proceedings of the Asian Conference on Computer
Vision, 2020. 2, 3

[47] Maria Priisalu, Aleksis Pirinen, Ciprian Paduraru, and Cris-
tian Sminchisescu. Generating scenarios with diverse pedes-
trian behaviors for autonomous vehicle testing. In Confer-
ence on Robot Learning, pages 1247–1258. PMLR, 2022. 2

[48] Davis Rempe, Tolga Birdal, Aaron Hertzmann, Jimei Yang,
Srinath Sridhar, and Leonidas J. Guibas. Humor: 3d human
motion model for robust pose estimation. In International
Conference on Computer Vision (ICCV), 2021. 3

[49] Davis Rempe, Jonah Philion, Leonidas J. Guibas, Sanja Fi-
dler, and Or Litany. Generating useful accident-prone driving
scenarios via a learned traffic prior. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2022. 1, 2, 6,
7, 14, 18, 20

[50] Zhiguo Ren, Panayiotis Charalambous, Julien Bruneau,
Qunsheng Peng, and Julien Pettré. Group modeling: A uni-
fied velocity-based approach. In Computer Graphics Forum,
volume 36, pages 45–56. Wiley Online Library, 2017. 1, 2

[51] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.
Springer, 2015. 13

[52] Andrey Rudenko, Luigi Palmieri, Michael Herman, Kris M
Kitani, Dariu M Gavrila, and Kai O Arras. Human motion
trajectory prediction: A survey. The International Journal of
Robotics Research, 39(8):895–935, 2020. 2

[53] Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hut-
ter. Learning to walk in minutes using massively parallel
deep reinforcement learning, 2021. 5, 16

[54] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi,
Rapha Gontijo Lopes, et al. Photorealistic text-to-image
diffusion models with deep language understanding. arXiv
preprint arXiv:2205.11487, 2022. 21

[55] Tim Salzmann, Boris Ivanovic, Punarjay Chakravarty, and
Marco Pavone. Trajectron++: Dynamically-feasible trajec-

10

tory forecasting with heterogeneous data. In European Con-
ference on Computer Vision, pages 683–700. Springer, 2020.
1, 2

[56] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization algo-
rithms. ArXiv, abs/1707.06347, 2017. 5

[57] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In International Confer-
ence on Machine Learning, pages 2256–2265. PMLR, 2015.
3

[58] Yang Song and Stefano Ermon. Generative modeling by esti-
mating gradients of the data distribution. Advances in Neural
Information Processing Systems, 32, 2019. 4

[59] Simon Suo, Sebastian Regalado, Sergio Casas, and Raquel
Urtasun. Trafficsim: Learning to simulate realistic multi-
agent behaviors. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
10400–10409, 2021. 14

[60] Martin Treiber, Ansgar Hennecke, and Dirk Helbing. Con-
gested traffic states in empirical observations and micro-
scopic simulations. Physical review E, 62(2):1805, 2000. 1,
2

[61] Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based
generative modeling in latent space. Advances in Neural In-
formation Processing Systems, 34:11287–11302, 2021. 3

[62] Jur Van den Berg, Ming Lin, and Dinesh Manocha. Recip-
rocal velocity obstacles for real-time multi-agent navigation.
In 2008 IEEE international conference on robotics and au-
tomation, pages 1928–1935. Ieee, 2008. 2

[63] Pascal Vincent. A connection between score matching and
denoising autoencoders. Neural computation, 23(7):1661–
1674, 2011. 4

[64] Jingkang Wang, Ava Pun, James Tu, Sivabalan Mani-
vasagam, Abbas Sadat, Sergio Casas, Mengye Ren, and
Raquel Urtasun. Advsim: Generating safety-critical sce-
narios for self-driving vehicles. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9909–9918, 2021. 18

[65] Jungdam Won, Deepak Gopinath, and Jessica Hodgins.
Physics-based character controllers using conditional vaes.
ACM Transactions on Graphics (TOG), 41(4):1–12, 2022.
2, 3

[66] Danfei Xu, Yuxiao Chen, Boris Ivanovic, and Marco Pavone.
Bits: Bi-level imitation for traffic simulation. arXiv preprint
arXiv:2208.12403, 2022. 1, 2, 6, 7

[67] Wenhao Yu, Greg Turk, and C. Karen Liu. Learning sym-
metric and low-energy locomotion. ACM Transactions on
Graphics (TOG), 37:1 – 12, 2018. 5, 16

[68] Ye Yuan, Shih-En Wei, Tomas Simon, Kris Kitani, and Jason
Saragih. Simpoe: Simulated character control for 3d human
pose estimation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2021. 5

[69] Ye Yuan, Xinshuo Weng, Yanglan Ou, and Kris M Kitani.
Agentformer: Agent-aware transformers for socio-temporal
multi-agent forecasting. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 9813–
9823, 2021. 1, 2, 19

[70] Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Gojcic,
Or Litany, Sanja Fidler, and Karsten Kreis. Lion: Latent
point diffusion models for 3d shape generation. In Advances
in Neural Information Processing Systems (NeurIPS), 2022.
3

[71] Yan Zhang and Siyu Tang. The wanderings of odysseus
in 3d scenes. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 20481–
20491, 2022. 3

[72] Ziyuan Zhong, Davis Rempe, Danfei Xu, Yuxiao Chen,
Sushant Veer, Tong Che, Baishakhi Ray, and Marco Pavone.
Guided conditional diffusion for controllable traffic simula-
tion. International Conference on Robotics and Automation
(ICRA), 2023. 2, 3, 4, 5, 7, 12, 19

11

Appendices
Appendix A and Appendix B go over details of the

TRACE and PACER models, respectively. Appendix C pro-
vides additional details of the experiments presented in the
main paper, while Appendix D gives additional results to
supplement those in the main paper. Appendix E discusses
limitations and future work in more detail.

Video Results. Extensive video results are included on the
project page. We highly encourage readers to view them to
better understand our method’s capabilities.

A. TRACE Details
In this section, we provide details on the TRAjectory

Diffusion Model for Controllable PEdestrians (TRACE)
presented in Sec 3.1 of the main paper.

A.1. Model Details

A.1.1 Denoising-Diffusion Formulation

Input Representations. In practice, the history trajecto-
ries of the ego pedestrian xego = [st−Tp . . . st] and N
neighboring pedestrians Xneigh = {xi}Ni=1 given as input to
the diffusion model include more than just positions, head-
ing, and speed. In particular, each past state is

s = [x y hx hy v l w p] ∈ R8

where (x, y) is the 2D position, (hx, hy) is the 2D heading
vector computed from the heading angle θ, v is the speed,
(l, w) is the 2D bounding box dimensions of the person, and
p ∈ {0, 1} indicates whether the person is present (visible)
at that timestep or not (e.g., due to occlusions in real-world
data). If a person is not visible at some step, i.e., p = 0, then
the full state vector is zeroed out before being given to the
diffusion model. All trajectories are transformed into the
local frame of the ego pedestrian at the current time step.

The rasterized map input M ∈ RH×W×C is in bird’s-
eye view, and is cropped around the ego pedestrian and
transformed into their local frame. For all experiments
H = W = 224 px at a resolution of 12 px/m. The map
is cropped such that 14 m to the front, left, and right of the
ego are visible, and ∼4.6 m behind. Each channel of M
is a binary map with 1 indicating the presence of some se-
mantic property. For example, in the ORCA dataset, there
are only two layers – one for walkable area and one for ob-
stacles. In nuScenes, there are seven layers representing
lane, road segment, drivable area, road divider, lane divider,
crosswalk, and sidewalk. Notice that the map for TRACE
does not contain fine-grained height information as in the
map for PACER. As such, TRACE is in charge of high-level
obstacle avoidance while PACER factors in both obstacles
and terrain.

Denoising with Dynamics. As discussed in the main pa-
per, during denoising the future state trajectory is always a
result of actions, i.e. diffusion/denoising are on τ a, similar
to [72]. In detail, given an input noisy action sequence τ ka
the denoising process is as follows: (1) compute the input
state sequence τ ks = f(st, τ

k
a) using the dynamics model

f , (2) pass the full input trajectory τ k = [τ ks ; τ
k
a] to the de-

noising model to predict the clean action trajectory τ̂ 0
a, (3)

compute the output state trajectory τ̂ 0
s = f(st, τ̂

0
a), (4) if

training, compute the loss in Eqn 3 of the main paper on the
full output clean trajectory τ̂ 0 = [τ̂ 0

s; τ̂
0
a].

We use a unicycle dynamics model for f [1]. Though hu-
mans are in theory more agile than the unicycle model, we
find it regularizes predictions to be generally smooth, which
is how pedestrians usually move and is amenable to being
followed by an animation model. Since our model requires
actions as input, we compute these from the state-only input
data through a simple inverse dynamics procedure.
Parameterization. At each denoising step k, TRACE must
predict the mean of the distribution used to sample the
slightly less noisy trajectory for step k − 1:

pϕ(τ
k−1 | τ k, C) := N (τ k−1;µϕ(τ

k, k, C),Σk). (8)

There are three common ways to parameterize this predic-
tion (we recommend [39] for a full background on these
formulations): (1) directly output µ from the network, (2)
output the denoised clean trajectory τ 0, or (3) output the
noise ϵ used to corrupt the clean trajectory. TRACE uses
(2), but the formulations are equivalent. In particular, we
can compute µ from τ k and τ 0 using

µ(τ 0, τ k) :=

√
ᾱk−1βk
1− ᾱk

τ 0 +

√
αk (1− ᾱk−1)

1− ᾱk
τ k (9)

where βk is the variance from the schedule (we follow [22,
39] and use a cosine schedule), αk := 1 − βk, and ᾱk :=∏k
j=0 αj . Therefore, we can plug the output from TRACE

τ̂ 0 along with the noisy input τ k into Eq. (9) to get the
desired next step mean µϕ. We can also use the fact that τ 0

is corrupted by

τ k =
√
ᾱkτ

0 +
√
1− ᾱkϵ (10)

where ϵ ∼ N (0, I) to compute ϵ from the output of
TRACE:

ϵ =
τ k −

√
ᾱkτ

0

√
1− ᾱk

. (11)

This allows the use of the classifier-free sampling strategy
defined in Eqn 4 of the main paper, which requires mixing
ϵ outputs from the conditional and unconditional models.

A.1.2 Architecture

The denoising architecture is shown in Fig. 2 of the main
paper. At each denoising step k, the step index is processed

12

https://nv-tlabs.github.io/trace-pace

Figure 7. Architecture of a single layer of denoising 1D U-Net.

with a positional embedding followed by a small MLP that
gives a 32-dim feature. The map feature extractor uses the
convolutional backbone of ResNet-18 [14] as the encoder
followed by a 2D U-Net [51] decoder that leverages skip
connections to layers in the encoder. For all experiments,
the output feature grid Ψ is then 56× 56× 32.

The ego xego and neighbor Xneigh history encoders op-
erate on past trajectories ∈ RTp×8 that are flattened to be
a single input vector. The ego and all neighbor trajectories
are processed by an MLP with 4 hidden layers giving a fea-
ture vector of size 128. A different MLP is learned for ego
and neighbor trajectories (i.e. all neighbors are processed
by the same MLP, which is different from the ego MLP).
Neighbor trajectory features are max-pooled to get a sin-
gle interaction feature. The resulting ego and interaction
features are finally jointly processed by another MLP with
4 hidden layers, giving a 256-dim feature summarizing the
past trajectory context.

Note that the processing of input conditioning described
thus far is only necessary to do once before starting the de-
noising process. Only the denoising 1D U-Net needs to be
run at every step. At step k of denoising, the 2D position
at each timestep t+i of the current noisy input trajectory
τ k is queried in the map feature grid to obtain a feature
gt+i = Ψ(xt+i, yt+i) ∈ R32. This query is done through
bilinear interpolation of map features at the corresponding
point. Over all timesteps, these form a feature trajectory
G = [gt+1 . . .gt+Tf

] that is concatenated along the chan-
nel dimension with τ k ∈ RTf×6 (containing both actions
and states) to get the full trajectory input to the denoising
U-Net [τ k;G] ∈ RTf×38. Each layer of the U-Net also re-
ceives the concatenation of the past trajectory context and
denoising step feature.

The architecture of a single U-Net layer is shown in
Fig. 7. The input trajectory at each layer is first processed by

a 1D convolution. The input trajectory history and step in-
dex feature are projected to the same feature size, broadcast
over the temporal dimension, and then added to the interme-
diate trajectory features. Another convolution is performed
before adding to the input trajectory in a residual fashion.
In the encoding part of the U-Net shown in Fig. 2 of the
main paper, a 2× downsampling over the temporal dimen-
sion is performed between layers, while a 2× upsampling is
done in the decoding part. The encoder is three layers with
output channels being 64, 128, and 256-dim.

A.1.3 Training Details

TRACE uses K = 100 denoising steps in both training
and testing. Training uses a fixed learning rate of 2e-4
with the Adam optimizer [25] and runs for 40k iterations.
TRACE trains on a 32 GB NVIDIA V100 GPU and takes
∼2 days on the ORCA dataset and ∼3 days on the mixed
nuScenes+ETH/UCY data.

During training, the neighbor history and map condition-
ing are randomly dropped out with a 10% probability. Note
that these are dropped independently and that the ego his-
tory is never dropped. In practice, to drop map condition-
ing, all pixels are filled with a 0.5 value; this means that the
model is aware that it “does not know” about the map con-
text, it is not simply fed an empty map with no obstacles (all
zeros). To drop neighbor conditioning, the neighbor history
feature is zeroed out. The same mechanism is used to train
on “mixed” data with varying annotations, e.g., some data
samples have no maps. In this case, a map is still given to
the model but filled with 0.5 value pixels.

A.2. Guidance Details

A.2.1 Scene-Level Guidance

Some guidance objectives are based on multi-agent interac-
tions, e.g., agent collision avoidance and social groups. In
this case, we assume that all pedestrians in a scene can be
denoised simultaneously in a batched fashion. At each de-
noising step, the loss function is evaluated at the current tra-
jectory prediction of all pedestrians and gradients are prop-
agated back to each one for guidance. This can be seen as
sampling a scene-level future rather than a single agent fu-
ture. If we want to sampleM possible scene futures, we can
draw M samples from each agent and assume that the mth
sample from each agent corresponds to the same scene sam-
ple. In other words, we compute the scene-level guidance
by considering only the mth sample from each agent.

This multi-agent guidance slightly complicates the fil-
tering procedure described in Sec. 4 of the main paper
whereby trajectory samples are strategically chosen to min-
imize the guidance loss. In the case of a multi-agent objec-
tive, the trajectory that minimizes the guidance loss for one

13

Figure 8. Illustrations of various guidance objectives. See text for
details.

agent may not be globally optimal, so it is undesirable to fil-
ter the agents independently. We instead do filtering at the
scene level, similar to how guidance is computed: we com-
pute the summed guidance loss across the mth sample from
all agents and choose the scene-level sample that minimizes
this aggregate loss.

A.2.2 Guidance Objectives

Next, we describe the different test-time guidance objec-
tives (losses) that we have implemented for TRACE. Ob-
jectives operate on the future state trajectory τ s that starts
at timestep t+ 1 and contains state sj at time j.

Agent Avoid and Social Distance. We use the same agent
collision penalty as in TrafficSim [59] and STRIVE [49]
which approximates each agent with disks to efficiently and
differentiably compute a collision loss. For pedestrians, it is
sufficient to use a single disk for each agent (see Fig. 8(a)).
With this approximation, collision detection is fast and the
collision loss is computed based on the extent of disk over-
lap between agents. It is easy to artificially inflate the size
of the disk in order to implement a desired social distance
between pedestrians. Note that this is a multi-agent objec-
tive, so guidance is enforced at the scene level, as previously
discussed.

Obstacle Avoid. We extend the differentiable environment
collision penalty introduced in STRIVE [49] to more ro-
bustly handle collision avoidance and provide more useful
gradients. The core idea is illustrated in Fig. 8(b); for each
timestep where the pedestrian’s bounding box is overlap-
ping with an obstacle, we query a grid of points on the agent
(in our experiments, this is 10×10) and define a loss with
respect to points that are embedded in the obstacle. For each
embedded point, we compute the minimum distance dmin to
a non-embedded point on the agent and define the loss at
that point as L = 1− (dmin/b) where b is the bounding box
diagonal of the agent. Summing the loss at all embedded
points gives the total loss.

A subtle, but very important, implementation detail here
is that the embedded points must be detached (i.e. stop grad)
before computing the loss. Intuitively, embedded points are
treated as points on the obstacle, not the agent. So when
the loss is computed with respect to these points, it gives a

meaningful gradient back to the non-embedded agent points
which propagates back to the agent position and heading.
Local Waypoint at Specific Time. This loss encourages an
agent to be at a specific 2D goal waypoint pg = (x, y) at
a specific time step j that falls within the planning horizon
Tf of the model. It simply encourages the trajectory to be at
that location at the timestep with the loss L = ||sj − pg||2.
Local Waypoint at Any Time. This loss encourages an
agent to be at a specific 2D goal waypoint pg = (x, y) at
any timestep that is within the planning horizon Tf of the
model. The loss is defined as

L =

t+Tf∑
j=t+1

δj · ||sj − pg||22 (12)

δj =
exp(−||sj − pg||)∑
j exp(−||sj − pg||)

. (13)

Intuitively, it tries to minimize the distance from all points
in the trajectory to the target location, but each timestep is
weighted by δj which is the softmin over the distances of
each step from the waypoint. The δj form a distribution
over trajectory timesteps where states close to the waypoint
will have higher probability and therefore be weighted more
in the loss.
Global Waypoint at Specific Time. This loss encourages
an agent to be at a specific 2D goal waypoint pg = (x, y) at
a specific timestep j that falls beyond the planning horizon
Tf of the model. This is useful during closed-loop operation
in which the agent should eventually reach the point, but at
the current step t is not within the planning horizon. Intu-
itively, the loss encourages making enough progress toward
the waypoint such that when it becomes in range, we can
revert to the Local Waypoint loss and hit the target exactly
at the desired time.

To do this, we would like to ensure that the future tra-
jectory ends in a location such that the pedestrian can travel
in a straight line at a “preferred” speed vpref and get to the
waypoint on time. Formally, the trajectory should be within
a target distance defined as:

dgoal = (j − t) · dt · vpref (14)

where dt is the step size of TRACE output (0.1 sec in our
experiments). Since the pedestrian may not be able to ac-
tually travel a straight line path (e.g. in environments with
obstacles), we incorporate an urgency parameter u ∈ [0, 1]
that encourages getting there earlier and modifies the goal
distance as

d̃goal = dgoal · (1− u). (15)

Then the loss with respect to this target distance is defined
as

L = ReLU(||sTf
− pg||2 − d̃goal) (16)

14

which penalizes the trajectory if the final state is not within
the goal distance.
Global Waypoint at Any Time. This loss encourages an
agent to be at a specific 2D goal waypoint pg = (x, y) at
any timestep beyond the planning horizon Tf of the model.
To determine whether the goal waypoint is outside the cur-
rent horizon, we check if the agent could progress along a
straight line to the goal at a preferred speed vpref and reach
the waypoint within the planning horizon. If so, the loss
reverts to the Local Waypoint loss.

If the waypoint is indeed beyond the planning horizon,
the loss attempts to progress according to some urgency u ∈
[0, 1]. To do this, we first compute the maximum distance
that could be covered in the current horizon:

dmax = Tf · dt · vpref (17)

and use the urgency to get the goal distance we wish to cover
over the horizon

dgoal = u · dmax. (18)

The loss is computed based on how much progress is made
over the horizon:

L = ReLU(dgoal − dprogress) (19)
dprogress = ||st − pg||2 − ||st+Tf

− pg||2. (20)

Social Groups. This loss encourages groups of agents to
travel together. A social group is based on one leader pedes-
trian that is not affected by the social group loss (via de-
tach/stop grad); others in the group will tend to move with
the leader. Intuitively, we want each agent in the social
group to maintain a specified social distance dsoc to the clos-
est agent also in the same social group. Let ψ be a map from
one agent index to another, e.g. i = ψ(k) means agent k in
the social group is mapped to agent i. Then the social group
loss for agent i at timestep j in the future trajectory is

L =
(
||sij − s

ψ(i)
j ||2 − dsoc

)2

. (21)

As shown in Fig. 8, most of the time ψ maps each agent
to the closest agent in the group, but with some probability
based on a cohesion parameter c ∈ [0, 1] the mapping will
be to a random agent in the group. So with a larger cohe-
sion, agents in the group are all encouraged to be equidis-
tant from each other, while with low cohesion agents will
not closely follow the leader and connected components in
the social group graph may break off and ignore others.
Learned Value Function. Given a learned value func-
tion V (τ s) that predicts the future rewards over a given
trajectory, in general this guidance loss is simply L =
exp(−V (τ s)). When TRACE is used with PACER, the
value function is V (vt|τ s,ht,ot,β); it takes in the current
humanoid state ht, environmental feature ot, and humanoid
shape β, which are fixed throughout denoising.

CNN

Figure 9. The PACER policy network πPACER consists of a task
feature processer EPACER(ϕt|ot, τ s) and an action policy network
πA

PACER(ϕt,ht).

B. PACER Details

In this section, we give details on the Pedestrian
Animation ControllER (PACER) presented in Sec 3.2.

B.1. Implementation Details

Humanoid State. The state ht holds joint positions jt ∈
R24×3, rotations qt ∈ R24×6, linear velocities vt ∈ R24×3,
and angular velocities ωt ∈ R24×3 all normalized w.r.t. the
agent’s heading and root position. The rotation is repre-
sented in the 6-degree-of-freedom rotation representation.
SMPL has 24 body joints with the root (pelvis) as the first
joint, which is not actuated, resulting in an action dimension
of at ∈ R23×3. No special root forces/torques are used.

Network Architecture. As mentioned in the main paper,
the environmental feature ot is a rasterized local height and
velocity map of size ot ∈ R64×64×3. The first channel is
the terrain height map relative to the current humanoid root
height, and the second & third channels are the 2D linear
velocities (x and y directions) in the egocentric coordinate
system. The map corresponds to a 4m × 4m square area
centered at the humanoid root, sampled on an evenly spaced
grid. The trajectory τ s ∈ R10×2 consists of the 2D way-
points for the next 5 seconds sampled at 0.5 s intervals.

The architecture of πPACER can be found in Fig. 9.
Due to the high dimensionality of the environmental fea-
tures ot, we separate the policy network into a task fea-
ture processer EPACER(ϕt|ot, τ s) and an action network
πAPACER(at|ϕt,ht,β). The task feature processor trans-
forms task-related features, such as environmental fea-
tures ot and trajectory τ s into a latent vector ϕt ∈
R256. Then, πAPACER computes the action at based on
the humanoid state ht, body shape β, and ϕt. The
overall policy network is then πPACER(at|ot,ht,β, τ s) ≜
πAPACER(EPACER(ot, τ s),ht,β). EPACER is a four-level con-
volutional neural network with a stride of 2, 16 filters, and
a kernel size of 4. πAPACER is a standard MLP with ReLU ac-
tivations. It has two layers, each with 2048 and 1024 units.

15

The policy maps to the Gaussian distribution over actions
πPACER(at|ot,ht,β, τ s) = N (µ(ot,ht,β, τ s),Σ) with a
fixed covariance matrix Σ. Each action vector at ∈ R23×3

corresponds to the PD targets for the 23 actuated joints on
the SMPL human body. The discriminator D(ht−10:t,at)
shares the same architecture as πAPACER, while the value
function V (vt|ot,ht,β, τ s) shares the same architecture as
the policy πPACER.

B.2. Reward and Loss

Reward. Following AMP [45], our policy πPACER is learned
through goal-conditioned RL where the reward contains a
task reward rτt , a style reward ramp

t , and an energy penalty
renergy
t . The style reward is computed by the discriminator
D(ht−10:t,at) based on 10 steps of aggregated humanoid
state. We use the same set of observations, loss formulation,
and gradient penalty as in AMP [45] to train our discrimi-
nator. Task reward rτt is a trajectory-following reward that
measures how far away the humanoid’s center ct on the xy
plane is from the 2D trajectory: exp(−2×∥ct−τ t∥2). The
energy penalty is expressed as −0.0005 ·

∑
j∈ joints |µj q̇j |2

where µj and q̇j correspond to the joint torque and the joint
angular velocity, respectively.
Motion Symmetry Loss. During our experiments, we no-
ticed that asymmetric gaits emerge as training progresses. It
manifests itself as “limping” where the humanoid produces
asymmetric motion, especially at a lower speed. This could
be due to the small temporal window used in AMP (10
frames), which is not sufficient to generate symmetrical mo-
tion. Compared to AMP, we use a humanoid with more than
double the degrees of freedom (69 vs 28), and the complex-
ity of the control problem grows exponentially. This could
also contribute to limping behavior as it becomes harder for
the discriminator to discern asymmetric gaits. Thus, we uti-
lize the motion symmetry loss proposed in [67] to ensure
symmetric gaits. Specifically, we first design two functions
Φs and Φa that can mirror the humanoid state and action
along the character’s sagittal plane. Symmetry is then en-
forced by ensuring that the mirrored states lead to mirrored
actions:

Lsym(θ) = ∥πPACER(ht,ot,β, τ s)−

Φa(πPACER(Φs(ht,ot,β, τ s)))∥2,
(22)

Notice that the motion symmetry loss is not a reward and
is directly defined on the policy output. As the loss can
be computed in an end-to-end differentiable fashion, we di-
rectly optimize this loss through SGD.

B.3. Training

Our training procedures closely follow AMP [45], with
notable distinctions in the motion dataset, initialization, ter-
mination condition, terrain, and humanoids used. Training
takes ∼3 days to converge on one NVIDIA RTX 3090.

Figure 10. During training, 2048 humanoids are simulated in par-
allel on our synthetic terrain.

Figure 11. Synthetic terrains used for training PACER. From left
to right: obstacles, discrete terrains, stairs (up), stairs (down), un-
even terrains, and slopes.

Dataset. We use a small subset of motion sequences from
the AMASS dataset [35] to train our humanoid controller.
Specifically, we hand-picked ∼200 locomotion sequences
consisting of walking and turning at various speeds, as well
as walking up and down stairs. These motions form the
reference motion database and provide our AMP Discrimi-
nator D(ht,at) with “real” samples.
Initialization. To initialize our humanoids during training,
we use reference state initialization [42] to randomly sam-
ple a body state h0. The initial root positions are randomly
sampled from a “walkable map” that corresponds to all lo-
cations that can be used as a valid starting point (e.g. not
on top of obstacles). As we use NVIDIA’s Isaac Gym, we
create 2048 humanoids that are simulated simultaneously in
parallel during training: see Fig. 10.
Random terrain, trajectory, and body shape sampling.
To learn a model that can traverse diverse types of terrain
that pedestrians may encounter in real life, we train our
trajectory-following controller on a variety of different en-
vironments. Specifically, we follow ANYmal [53] to create
terrain curricula with varying difficulties to train our agents.
Six types of terrain are created: slopes, uneven terrain, stairs
(down), stairs (up), discrete, and obstacles. The terrains fol-
low a gradual increase in difficulty, where we vary the slope
angle, terrain unevenness, slope angle of stairs, and obstacle
density, as shown in Fig. 11.

Trajectory samples for training are generated procedu-

16

rally: τs is randomly sampled by generating velocities and
turn angles. We limit the velocity to be between [0, 3] m/s
and the acceleration to be between [0, 2] m/s2.

To train with different body shapes, we extract all unique
human body shapes from the AMASS dataset, which
amount to 476 shapes (273 male and 200 female). We ran-
domly sample (with replacement) 2048 body shapes to cre-
ate humanoids at the beginning of the training process. To
create reference humanoid states ĥt for the discriminator,
we perform forward kinematics based on the sampled pose
and the humanoids’ kinematic tree. At the beginning of ev-
ery 250 episodes, we randomly sample a new batch of pose
sequences from the motion dataset and create new reference
humanoid states. In this way, we obtain reference states of
diverse body types and motions.

Termination condition. To speed up training, we employ
early termination [42] and terminate the episode if there is
a collision force greater than 50 N on the humanoid body,
with either the scene or other humanoids. The ankles and
foot joints are exceptions to this rule, as they are in contact
with the ground. This condition also serves as a fall de-
tection mechanism, as falling will involve a collision force
from the ground. Notice that this termination condition
encourages the humanoid to avoid obstacles and other hu-
manoids since a collision will trigger an early termination.

C. Experimental Details

In this section, we include details of the experiments pre-
sented in Sec 4 of the main paper.

C.1. Dataset Details

The ORCA dataset contains two distinct subsets, ORCA-
Maps and ORCA-Interact. ORCA-Maps is generated with
up to 10 pedestrians and 20 obstacles in each scene. This
contains many obstacle interactions, but fewer agent-agent
interactions. ORCA-Interact has up to 20 pedestrians, but
no obstacles, and therefore has no map annotations. Each
data subset contains 1000 scenes that are 10s long, and we
split them 0.8/0.1/0.1 into train/val/test splits. The map an-
notations in the ORCA dataset contain two channels, one
representing the walkable area and one representing obsta-
cles. The bounding box diameter for every agent is fixed to
0.8m.

In nuScenes [4], there are seven map layers represent-
ing the lane, road segment, drivable area, road divider, lane
divider, crosswalk, and sidewalk. The bounding box diam-
eters are given by the dataset. We follow the official trajec-
tory forecasting benchmark for scenes in the train/val/test
splits. For ETH/UCY [29, 41], we use the official training
splits of each contained dataset for training.

All trajectory data in all datasets is re-sampled to 10 Hz
for training and evaluation of TRACE.

C.2. Guidance Metrics

Here, we define the Guidance Error for each of the ob-
jectives evaluated in Sec 4.1 and 4.2 of the main paper.

Obstacle Avoid. This is the obstacle collision rate as de-
fined below.

Agent Avoid. This is the agent collision rate as defined
below.

Waypoint and Perturbed Waypoint. If the objective is
to reach a waypoint at a specific timestep, this is simply
the distance of the agent from the target waypoint at that
specified timestep (in meters). Otherwise, if the objective is
to reach at any timestep, the error is the minimum distance
between the agent and the goal waypoint across the entire
trajectory.

Social Groups. For each pedestrian in the group, we mea-
sure the mean absolute difference between the specified so-
cial distance dsoc (see Appendix A.2.2) and the distance to
the closest neighbor in the same social group.

Multi-Objective. For the multi-objective guidance pre-
sented in Tab 1 of the main paper (Waypoint + Avoidance),
the reported guidance error is the waypoint error since ob-
stacle and agent collision rates are already reported in other
columns.

C.3. Other Metrics

Next, we describe in more detail the metrics used to eval-
uate the standalone TRACE model in Sec 4.1 and 4.2 of the
main paper.

Obstacle Collision Rate. Measures the average fraction of
time that an agent (as represented by a single disk) is over-
lapping with an obstacle on the map within a rollout. Note
that a disk is used to represent each agent because this is
how they are represented in the ORCA simulator, so the
ground truth data contains no collisions using this represen-
tation.

Agent Collision Rate. Measures the average fraction of
agents involved in an agent-agent collision within each
scene rollout. This again uses the disk representation of
each agent.

Realism (EMD). Compares the histogram of statistics over
the entire test set between generated and ground truth tra-
jectories. This is done for velocity, longitudinal accelera-
tion, and lateral acceleration. In particular, the statistics at
each timestep of the test set are aggregated together into a
histogram. The histogram is then normalized such that it
sums to 1. The earth mover’s distance (EMD) between the
ground truth and generated histograms is then computed2

and reported. Note that this metric is computed wrt the
dataset being evaluated on. For example, in Sec 4.1 of the

2using pyemd

17

https://github.com/wmayner/pyemd

main paper, even though TRACE is trained on both ORCA-
Maps and ORCA-Interact, the metric is only computed for
ORCA-Maps since this is the test data.
Realism (Mean). Measures the average longitudinal and
lateral acceleration within a generated trajectory in m/s2.
Similar metrics are commonly used in the vehicle planning
literature [64] as a proxy for how comfortable a ride is. In
our case of pedestrian motion, this is still relevant since peo-
ple tend to move in smooth motions without sudden changes
in speed or direction.

C.4. VAE Baseline Details

We adapt a conditional VAE model similar to the idea
of STRIVE [49] for controlling trajectories through latent
space optimization. We adapt the VAE design to our setting.
Architecture. The architecture operates in an agent-centric
manner as in TRACE. It is a fairly standard conditional
VAE (CVAE) where the conditioning (map and past tra-
jectories) is processed into a single conditioning vector c
that is given to the decoder. At training time, the decoder
also takes in a latent vector z from the encoder (posterior),
while at test time the latent vector is sampled from the
prior p(z) = N (z;0, I). To make the methods comparable,
the map conditioning is encoded with the same ResNet-18
backbone that TRACE uses; ego and neighbor past trajec-
tories also use the same architecture as TRACE. Since the
model is agent-centric rather than scene-centric, the decoder
D is simply an MLP that maps the conditioning and sam-
pled latent to an output action trajectory (instead of a graph
network as in STRIVE) as τ a = D(z, c). In all experi-
ments, the latent dimension is 64, while the conditioning
feature vector is 256-dim.
Training. Training is done using a standard VAE loss con-
sisting of a reconstruction and a KL divergence term. The
KL term is weighted by 1e-4. The model is trained with the
same batch size as TRACE (400) and for the same number
of iterations (40k) with a learning rate of 2e-4.
Test-Time Optimization. The idea of test-time optimiza-
tion is to search for a latent vector that is likely under the
prior (i.e. represents a plausible future trajectory) but also
meets the desired guidance objective. Concretely, the opti-
mization objective is

min
z
αJ (D(z, c))− log p(z) (23)

where J is a guidance loss as described in the main pa-
per and α balances the prior term with the guidance loss.
Optimization is performed with Adam [25] using a learn-
ing rate of 0.02. For experiments in Sec 4.1 of the main
paper, optimization uses 100 iterations (same as the num-
ber of diffusion steps K). For Sec 4.2, the iteration budget
is increased to 200 to accommodate more difficult out-of-
distribution objectives.

Discussion on VAE Comparison. The VAE with test-time
optimization is generally a very strong baseline. Given a
large enough compute budget, the optimization can usually
faithfully meet the desired objective. However, the number
of optimization iterations needed to meet an objective can
be large; e.g. in Sec 4.2 it requires twice the number of diffu-
sion steps, making it slower than TRACE. Moreover, when
optimizing for a long time to closely meet objectives, the
diversity of optimized samples becomes low as they con-
verge to similar minima (Fig. 4 in the main paper). This is
due to the prior term in Eq. (23), which always drives the
trajectory towards the mean.

C.5. Additional Experiment Details

Finally, we include miscellaneous details of the setup for
each experiment in Sec. 4 of the main paper.

Augmenting Crowd Simulation (Sec 4.1). For the no
guidance rows in Tab 1, we actually run the evaluation three
times and report the averaged metrics. This is because when
there is no guidance, no filtering is performed, so a random
sample is chosen. Running with several random samples
gives a more faithful evaluation of performance. In this
experiment, TRACE uses w = 0.0 for classifier-free sam-
pling. 20 samples are drawn and guided from the model for
each pedestrian before filtering. The weighting α for each
guide (in Eq. 6 of the main paper) is tuned manually to meet
objectives while maintaining realistic trajectories. The Way-
point guidance used in Tab 1 is the Local Waypoint at Any
Time introduced in Appendix A.2.2. The agent avoidance
guidance uses an additional social distance buffer of 0.2m.

Real-world Data Evaluation (Sec 4.2). In this experi-
ment, 10 samples are drawn from the model before filtering
and the waypoint guidance is Global Waypoint at Any Time
since the model operates in a closed loop for longer than
the planning horizon. This waypoint guidance uses an ur-
gency of u = 0.7 and a preferred speed of vpref = 1.25m/s.
The perturbed waypoint objective randomly perturbs the
target ground truth waypoint with Gaussian noise with a
standard deviation of 2m. The social group guidance uses
dsoc = 1.5 and cohesion c = 0.3. In each nuScenes
scene, social groups are determined heuristically by form-
ing a scene graph where edges are present if two pedestrians
are within 3m of each other and moving in a similar direc-
tion (velocities have a positive dot product): the connected
components of this graph with more than one agent form
the social groups.

Controllable Pedestrian Animation (Sec 4.3). In this ex-
periment, 10 samples are drawn from the model before fil-
tering. Waypoint guidance uses Global Waypoint at Spe-
cific Time with the waypoint randomly placed at a reason-
able distance ([7, 12] meters in front of the user and up to 5
meters to either side) 9 sec in the future. Agents are initial-

18

Figure 12. Random sampling with no guidance from different
TRACE architecture ablations. Using the learned feature map has
apparent benefits in subtle interaction with obstacles. 20 random
samples are visualized for each pedestrians with the (arbitrarily)
chosen plan in bold.

ized in a standing pose with a uniform random initial root
velocity in [1.2, 2.0]m/s.

D. Supplementary Results
In this section, we include additional experimental re-

sults omitted from the main paper due to page limits.

D.1. Qualitative Results

Extensive qualitative video results for both TRACE and
PACER are provided on the supplementary webpage.

D.2. TRACE– No Guidance Ablation Study

The focus of our work is on controllability using guid-
ance. However, it is still desired that the model performs
well even when guidance is not used. In particular, ran-
dom samples from the model should be robust (avoid col-
lisions), realistic (similar to the training data distribution),
and accurate (capture the ground truth future trajectory).
To this end, we evaluate our architecture and training ap-
proach compared to baselines and ablations while using no
guidance. We evaluate in the open-loop 5s rollout setting
on ORCA-Maps as used in Sec. 4.1 of the main paper.
Two additional metrics common in trajectory forecasting
are evaluated: the average displacement error (ADE) and
the final displacement error (FDE) [69]. For a trajectory
sample defined from timesteps 1 to T , these are defined as

ADE = 1
T

∑T
t=1 ||ŷt−yt||2 and FDE = ||ŷT −yT ||2 with

ŷ the sample from the model and y the ground truth.
First, we evaluate the TRACE architecture, which uses

a feature grid to condition denoising on the map input. An
alternative way to condition trajectory generation is to en-
code the map into a single (“global”) feature vector using
a convolutional backbone. This global feature can then be
given in the same way as the past trajectory features. The
VAE baseline and TRACE-Global ablation do this using a
ResNet-18 backbone. The TRACE-Raster ablation is sim-
ilar to CTG [72], which rasterizes both the map and agent
histories and encodes them into a single global feature in-
stead of encoding the trajectory states separately. Tab. 5
shows the results comparing these methods. In this exper-
iment, we take 20 samples from each model and evaluate
the one that is closest to the ground truth wrt the ADE. We
see that using the feature grid map provides the lowest ob-
stacle collision rate while maintaining competitive accuracy
and realism. As qualitatively shown in Fig. 12, the use of
the feature grid gives local cues to the model to inform sub-
tle obstacle interactions and avoid collisions. Though agent
collisions are slightly worse with the grid map, no model
does particularly well, and exploring improved agent-agent
interactions is an important direction for future work.

In the main paper, we discuss how mixed training data
and classifier-free sampling (i.e. training with random drop-
ping on conditioning) are important to enable flexibility for
guidance. To ensure this training approach does not nega-
tively affect base model performance without guidance, we
compare to (1) an ablation that uses the ORCA-Maps data
only to train (rather than a mix of ORCA-Maps+ORCA-
Interact) and (2) ablations that use varying levels of drop-
ping. Tab. 6 shows results, where again the sample clos-
est to ground truth is evaluated. Interestingly, training with
mixed data allows for increased accuracy compared to train-
ing only on the ORCA-Maps dataset. Increasing the drop
probability past 5% has very little effect on performance
and comes with the added benefit of using classifier-free
sampling to get flexible guidance at test time.

D.3. TRACE– Effect of Classifier-Free Sampling

Next, we examine how weight w affects model perfor-
mance when using classifier-free sampling both with and
without guidance. First, we analyze the effect when eval-
uating on the ORCA-Maps dataset with no guidance in the
open-loop setting (like Sec 4.1 of the main paper). In this
case, we evaluate w ≥ 0 which increases emphasis on the
input conditioning to the model. Quantitative results are
shown in Tab. 7: for each value of w, the evaluation is run 3
times with different random samples and the metrics are av-
eraged. For w ∈ [0, 1], the collision rates and acceleration
realism remain similar or slightly improve, which we expect
since input conditioning such as the obstacle map is empha-

19

History Map Accuracy Collision Rate Realism (EMD)
Method Input Feature ADE FDE Obstacle Agent Vel Lon Acc Lat Acc

VAE [49] States Global 0.340 0.774 0.062 0.115 0.041 0.038 0.039
TRACE-Raster Raster Global 0.337 0.808 0.052 0.100 0.027 0.013 0.014
TRACE-Global States Global 0.280 0.686 0.056 0.094 0.022 0.013 0.016

TRACE States Grid 0.318 0.757 0.046 0.110 0.028 0.020 0.020

Table 5. No guidance evaluation on ORCA-Maps dataset. Ablation on architecture design choices.

Drop Accuracy Collision Rate Realism (EMD)
Train Data Rate ADE FDE Obstacle Agent Vel Lon Acc Lat Acc

ORCA-Maps 10% 0.351 0.819 0.040 0.112 0.030 0.023 0.024
Mixed 0% 0.303 0.719 0.042 0.123 0.028 0.019 0.020
Mixed 5% 0.307 0.712 0.040 0.108 0.024 0.020 0.023

Mixed 10% 0.318 0.757 0.046 0.110 0.028 0.020 0.020

Table 6. No guidance evaluation on ORCA-Maps dataset. Ablation on training routine.

Collision Rate Realism (EMD)
w Obstacle Agent Vel Lon Acc Lat Acc

0.0 0.051 0.131 0.019 0.012 0.014
0.3 0.051 0.130 0.027 0.008 0.010
0.5 0.050 0.132 0.029 0.008 0.009
0.7 0.050 0.132 0.033 0.009 0.008
1.0 0.049 0.130 0.040 0.010 0.009
2.0 0.051 0.132 0.063 0.017 0.015
3.0 0.052 0.138 0.087 0.025 0.022
4.0 0.051 0.145 0.102 0.033 0.028

Table 7. Classifier-free sampling analysis on ORCA-Maps dataset
with no guidance.

Waypoint Realism (Mean)
w Error Lon Acc Lat Acc

0.0 1.129 0.233 0.218
-0.3 0.972 0.213 0.199
-0.5 0.802 0.212 0.204
-0.7 0.670 0.240 0.233
-1.0 0.546 0.345 0.348

Table 8. Classifier-free sampling analysis on nuScenes dataset us-
ing perturbed waypoint guidance.

sized. For w>1, the guidance tends to be too strong and
the trajectory samples are almost deterministic. Though the
quantitative difference is not large as w increases, in Fig. 13
we see that increasing does have a considerable qualitative
effect.

Second, we look at results on the nuScenes dataset using
perturbed waypoint guidance in the closed-loop setting (the
same as in Sec. 4.2 of the main paper). In Sec. 4.2 of the
main paper, we saw that using w < 0 improves suscepti-
bility to guidance and allows the model to achieve out-of-
distribution objectives. This is further confirmed in Tab. 8.
We see that the smaller thew, the better the waypoint reach-
ing error. However, for w < −0.5 the mean accelerations
of pedestrians start to deviate more from those observed in
the ground truth nuScenes data, as the model is capable of

Figure 13. Sampling using increasing classifier-free weights w.
20 samples are visualized for each pedestrian. Larger w tends
to emphasize collision avoidance and reduces the variance of the
sampled trajectory distribution, especially for pedestrians near ob-
stacles where conditioning has a large effect on motion.

producing more extreme trajectories to reach waypoints.

D.4. PACER– Ablation Study

In this experiment, we demonstrate the importance of
multiple design decisions in the PACER model. First, we
choose to make the animation controller agent-aware by
including neighboring pedestrians in the heightmap given
to the model. For comparison, we train a model that is
agent unaware, i.e., the input height map only contains ob-
stacles. As seen in the top half of Tab. 9, even though
TRACE is already agent-aware, having PACER endowed
with awareness is highly beneficial. Both with and with-
out agent avoidance guidance on TRACE, the agent-aware
model greatly improves the collision rate.

20

Fail Traj Follow
Terrain Model Guide Rate Error

Flat Agent Unaware None 0.252 0.102
(Crowd) Agent Aware None 0.087 0.082

Agent Unaware Agt Avoid 0.060 0.067
Agent Aware Agt Avoid 0.013 0.071

Random Body Unaware None 0.125 0.105
Body Aware None 0.093 0.104
Body Unaware Waypoint 0.103 0.102
Body Aware Waypoint 0.107 0.111

Table 9. PACER ablation study while using TRACE as the trajec-
tory planner.

Figure 14. TRACE planning time within the end-to-end pedestrian
animation system for varying terrains, guidance, and number of
simulated agents.

Second, we evaluate whether making PACER body-
aware is necessary, i.e. if it needs to take the parameters
of the SMPL body β shape as input, as it is already train-
ing in simulation with a variety of body shapes. The bottom
half of Tab. 9 shows that while traversing random terrains,
body awareness helps to improve the failure rate when no
guidance is used. When waypoint guidance is added, per-
formance is essentially unchanged.

As motion is best seen in videos, we also include videos
of how the symmetry loss and body shape conditioning af-
fect motion quality; please see the supplementary webpage.

D.5. Runtime Analysis

Fig. 14 shows an analysis of the average runtime for one
planning step of TRACE within the end-to-end animation
system (on an NVIDIA TITAN RTX). Varying numbers of
simulated humanoids are tested using the terrains and guid-
ance introduced in Sec 4.3 of the main paper. With ≤50
agents, TRACE planning takes ≤5 sec, but becomes more
costly with 100 agents, especially using agent avoidance
guidance. Since collision avoidance requires pairwise com-
parisons between many agents, it can be costly.

The standalone PACER model is real time, running at
∼30 fps for 1 humanoid and ∼25 fps for 100.

E. Discussions and Limitations

TRACE Efficiency. The main limitation of using our sys-
tem in a real-time setting is the speed of the denoising pro-
cess. This is a well-known issue with diffusion models, and
the community is actively working to address it. For exam-
ple, recent work on distilling diffusion models [38] could be
applied here to greatly speed up sampling.
Multi-Objective Guidance. One challenge with using sev-
eral objectives simultaneously to guide TRACE is balanc-
ing the weight α for each. Though it is not difficult to
tune each weight individually, we found that when com-
bined, the guidance strength can be too much depending on
the scene. Intuitively, if two guidance objectives are push-
ing a trajectory in the same direction (e.g. avoiding obstacle
collision and going to a waypoint), the combined guidance
will have compounded strength that may push the trajec-
tory to diverge off-manifold. Work in image generation has
noticed similar effects when using strong guidance, which
manifests itself as saturated images. To avoid this, various
forms of dynamic clipping during sampling have been in-
troduced [54]. While this makes sense for images that have
been normalized in a fixed range, it is not trivial for trajec-
tories and we think this is an interesting problem for future
work.
PACER Motions. Though PACER is robust and traverses
diverse terrains while driving humanoids with different
body shapes, it struggles with large obstacles when there
is no way around them. The motion generated at low speed
can also be unnatural as our motion database contains few
samples where the humanoid is traveling at extremely low
speed. Our humanoids also lack motion diversity, since
most body types will have similar walking gaits and will
not manifest common pedestrian behaviors such as talking
on the phone or with each other. More research is needed to
improve the quality and diversity of the motion.

21

	. Introduction
	. Related Work
	. Method
	. Controllable Trajectory Diffusion
	Trajectory Diffusion Model
	Controllability through Clean Guidance

	. Physics-Based Pedestrian Animation
	. Controllable Pedestrian Animation System

	. Experiments
	. Augmenting Crowd Simulation
	. Real-world Data Evaluation
	. Controllable Pedestrian Animation

	. Discussion
	. TRACE Details
	. Model Details
	Denoising-Diffusion Formulation
	Architecture
	Training Details

	. Guidance Details
	Scene-Level Guidance
	Guidance Objectives

	. PACER Details
	. Implementation Details
	. Reward and Loss
	. Training

	. Experimental Details
	. Dataset Details
	. Guidance Metrics
	. Other Metrics
	. VAE Baseline Details
	. Additional Experiment Details

	. Supplementary Results
	. Qualitative Results
	. TRACE– No Guidance Ablation Study
	. TRACE– Effect of Classifier-Free Sampling
	. PACER– Ablation Study
	. Runtime Analysis

	. Discussions and Limitations

