
Supplement: SpaceMesh: A Continuous Representation for Learning
Manifold Surface Meshes

In the supplement, we provide additional experimental details for
mesh fitting (Section 1 and Section 2) and learning experiment
(Section 3). We further provide methodology details for applying
our method to mesh repair tasks in Section 4.

1 SINGLE MESH FITTING
To fit a single mesh using our SpaceMesh representation, we op-
timize the per-vertex embeddings (𝑥𝑖 , 𝑦root𝑖

, 𝑦
prev
𝑖

, 𝑦next
𝑖

). The ad-
jacency embeddings, 𝑥𝑖 , are set to a dimension of 16, while each
permutation embedding has a dimension of 6. The same dimensions
for space and time coordinates are used across all experiments, with
𝑘𝑠 = 𝑘𝑡 = 𝑘/2. During training, the permutation matrix Φ is con-
structed using the ground truth adjacencymatrix. The regularization
parameter 𝜆 in Eq. 3 of the main paper is set to 𝜆 = 4 𝑁edges

𝑁vertices
2 , where

𝑁edges and 𝑁vertices represent the number of edges and vertices in
each shape, respectively.
The Adam optimizer [Kingma and Ba 2014] is employed with

a learning rate of 0.1. The overfitting process typically converges
within 70 iterations. For comparison with DMesh [Son et al. 2024],
we used the official released code1. For comparison with DSE [Rako-
tosaona et al. 2021], we used the official released code2 and trained
the networks to overfit a single mesh each time.

2 FITTING COLLECTIONS OF MESHES
In this experiment we follow a typical autodecoder setup, optimiz-
ing one 512-dimension latent code for each mesh in the dataset and
employing a Transformer [Vaswani et al. 2017] to decode each latent
code into the corresponding mesh. Specifically, for each mesh, the
latent code is repeated 𝑁 times (where 𝑁 is the maximum number
of vertices in the dataset), and a learnable positional embedding
(shared across different meshes) is added to the repeated latent code.
This resulting tensor is then passed to the Transformer to predict the
vertex positions and per-vertex embeddings. To accommodate vary-
ing numbers of vertices across different meshes, all mesh vertices
are padded with zeros up to 𝑁 = 2000.

Additionally, a mask channel is appended to the vertex positions,
with ground truth values of -1 or 1 indicating whether the vertex
is padded or not, respectively. During training, the latent code for
each shape, the positional embedding, and the Transformer weights
are jointly optimized using a combination of the L2 loss on the
predicted vertices and the losses described in Section 3. During
inference, vertices with negative predictions in the mask channel
are pruned.
Consistent with the overfitting experiment, the regularization

parameter 𝜆 in Eq. 3 is set to 𝜆 = 4 𝑁edges
𝑁vertices

2 , and a learning rate of
0.001 is used.

1https://github.com/SonSang/dmesh
2https://github.com/mrakotosaon/dse-meshing

Author’s address:

Dataset. We conduct our experiments on the Thingi10K [Zhou
and Jacobson 2016] dataset, which has a diverse collection of real-
world 3D printing models exhibiting a variety of shape complexities,
topologies, and discretizations. From this dataset, we filter a subset
consisting of manifold meshes with vertex counts ranging between
1000 and 2000, and randomly select 200 meshes. For each selected
mesh, the vertices are sorted in z-y-x order, in accordance with the
methodology of PolyGen [Nash et al. 2020].

3 LEARNING TO MESH THE SHAPE

3.1 Training Details
In this experiment, we use a dimension of 32 for adjacency embed-
dings and a dimension of 12 for each permutation embedding. The
total number of channels for the output of the vertex connectivity
prediction network is 68.

For the point cloud encoder, we use a PVCNN [Liu et al. 2019] with
4 PVConv layers, each with voxel resolutions of 32, 16, 8, and chan-
nels of 64, 128, and 256, respectively. The vertex position generation
network follows the transformer-based diffusion model as in the
original Point-E [Nichol et al. 2022], with 10 residual self-attention
blocks of width equals 256. As mentioned in the main paper, at each
denoising step, we concatenate the vertices’ positions with features
that are tri-linearly interpolated with the multi-resolution feature
volumes from the encoder. The concatenated features are further
passed through 4 PVConv layers with the same dimensions as the
point cloud encoder. The training follows the standard diffusion
model scheme with 1024 diffusion timesteps.

For the vertex connectivity prediction model, we also use PVConv
to process the interpolated features. During training, our vertex
generation model, which is based on a set transformer, does not
hold correspondence between denoised vertices and ground truth
vertices. Consequently, we use the ground truth vertices as input for
training the connectivity prediction model, allowing supervision by
the ground truth connectivity.We observe that the vertex generation
model converges more quickly than the connectivity prediction
network. Therefore, we train the connectivity prediction network
for 10 steps for every single training step of the vertex generation
model.
For the ABC dataset, since all meshes have the same number

of vertices, we do not additionally predict a vertex mask. For the
ShapeNet dataset, we predict 512 vertices, which is the maximum
number of vertices in the filtered dataset, and an additional mask
channel. We train our model using the Adam optimizer with a
learning rate of 0.0001 for 800k iterations until convergence. To
combine the loss for vertex prediction and connectivity prediction,
we multiply the loss function from Equation. 3 by 200 and add it to
the loss in Equation. 5 and the diffusion loss, both with a scale of 1.

Evaluation Metrics. We briefly describe the metrics used to eval-
uate the reconstruction quality. In all experiments, the longest di-
mension of all meshes is normalized to [-1, 1].

https://github.com/SonSang/dmesh
https://github.com/mrakotosaon/dse-meshing

2 • Shen et al.

Fig. 1. Results on the ABC dataset generated by our learning to meshmodel.

Fig. 2. Results on the Thingi10k dataset generated by our learning to mesh
model trained on ABC dataset.

Chamfer Distance (CD) measures the distance between two point
clouds using nearest neighbor search, sampling 10,000 points from
the surface of each mesh. The F1-score is computed for the same
point sets used for CD. Precision is determined by classifying points
on the predictedmesh as true positives if their distance to the nearest
ground truth (GT) point cloud is less than 0.02; otherwise, they are
false positives. Recall uses the same 0.02 threshold. Edge Chamfer
Distance (ECD) and Edge F-score (EF1) evaluate the reconstruction
of sharp features, following prior works [Chen et al. 2022]. Each
point in the sampled point cloud is checked by comparing the dot
products between its normal and those of its neighbors; if the mean
dot product is below 0.2, the point is classified as an edge point. ECD
and EF1 then measure the Chamfer Distance and F1-score between
these edge points. For the percentage of inaccurate normals, we
use a 10-degree threshold. The normal of a point sampled from the
reconstructed mesh is considered as inaccurate if the angles between
its normals and that of the nearest ground truth point exceed 10
degrees.

3.2 Additional Results
Results on ABC Dataset. We present additional qualitative re-

sults produced by our learning-to-mesh model, trained on the ABC
dataset, in Figure 1. To further evaluate our model, we perform stress
tests by meshing novel shapes from the Thingi10k dataset [Zhou
and Jacobson 2016], with qualitative results shown in Figure 2. The
results demonstrate that our model accurately reconstructs 3D man-
ifold meshes from input point clouds, showcasing its ability to gen-
eralize to unseen shapes during training.

4 DOWNSTREAM TASK: MESH REPAIR
We provide details on the algorithm to repair a partial mesh using
our method. We first obtain the geometry context by sampling the
point cloud on the whole surface and feeding it into the point cloud
encoder. To generate vertex positions on the target region, while
maintaining the original vertices on the untouched region, we re-
design the vertex sampling process in the vertex diffusion model,
following standard diffusion in-painting approaches.
Specifically, after removing the region to be repaired from the

original mesh, we denote the partial mesh that we want to complete
as Mknown = (Vknown, Eknown, F known). To begin the denoising
process, we sample all vertices from a Gaussian distribution for time
step 𝑇 : V𝑇 ∼ N(0, I). At each denoising step 𝑡 , we first align V𝑡

with the known verticesVknown to obtain a mask m which takes
value 1 if the vertex is inV𝑡 and 0 otherwise — see paragraph below.
We feed V𝑡 into our point cloud diffusion model: Vunknown

𝑡−1 ∼
N (𝜇𝜃 (V𝑡 , 𝑡), Σ𝜃 (V𝑡 , 𝑡)), where 𝜇𝜃 , Σ𝜃 is the mean and variance
prediction from our model, respectively. The denoised vertices will
be V𝑡−1 = m ⊙ Vknown

𝑡−1 + (1 −m) ⊙ Vunknown
𝑡−1 , where Vknown

𝑡−1 ∼
N

(√
𝛼𝑡Vknown, (1 − 𝛼𝑡) I

)
. After sufficiently many denoising steps

we have the final verticesV0 that match the original mesh except
in the region that has been repaired.

The new connectivity is predicted using our connectivity gener-
ation model. In this case, to preserve the existing edges and faces
from the partial mesh, we only altered the connectivity between the
predicted vertices and the boundary vertices fromVknown.

AligningVknown andV𝑡 . Since it is challenging to align two point
sets with different numbers of points for each set, we first append
surface points sampled from themasked regions, denoted as 𝑝masked,
to the known verticesVknown, such that |V𝑡 | = |Vknown |. We then
solve the correspondence by first computing a cost matrix C, where
each item in the matrix C𝑖 𝑗 = ∥V𝑡, 𝑗 − Vknown

𝑖
∥2

2. To determine
the one-to-one correspondence, we adopt the same strategy that
we use for determining the local ordering (Section 3.3 in the main
paper). In short, we apply Sinkhorn normalization [Sinkhorn 1964]
to recover a doubly-stochastic matrix, Ĉ, representing a softened
permutation matrix [Adams and Zemel 2011]. The correspondence
can be recovered by computing the optimal unconstrained lowest-
cost matching [Jonker and Volgenant 1988].

Supplement: SpaceMesh: A Continuous Representation for Learning Manifold Surface Meshes • 3

REFERENCES
Ryan Prescott Adams and Richard S Zemel. 2011. Ranking via sinkhorn propagation.

arXiv preprint arXiv:1106.1925 (2011).
Zhiqin Chen, Andrea Tagliasacchi, Thomas Funkhouser, and Hao Zhang. 2022. Neural

Dual Contouring. ACM Transactions on Graphics (Special Issue of SIGGRAPH) 41, 4
(2022).

Roy Jonker and Ton Volgenant. 1988. A shortest augmenting path algorithm for dense
and sparse linear assignment problems. In DGOR/NSOR: Papers of the 16th Annual
Meeting of DGOR in Cooperation with NSOR/Vorträge der 16. Jahrestagung der DGOR
zusammen mit der NSOR. Springer, 622–622.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014).

Zhijian Liu, Haotian Tang, Yujun Lin, and Song Han. 2019. Point-voxel cnn for efficient
3d deep learning. Advances in neural information processing systems 32 (2019).

Charlie Nash, Yaroslav Ganin, SM Ali Eslami, and Peter Battaglia. 2020. Polygen: An
autoregressive generative model of 3d meshes. In International conference on machine
learning. PMLR, 7220–7229.

Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela Mishkin, and Mark Chen. 2022.
Point-e: A system for generating 3d point clouds from complex prompts. arXiv
preprint arXiv:2212.08751 (2022).

Marie-Julie Rakotosaona, Paul Guerrero, Noam Aigerman, Niloy J Mitra, and Maks
Ovsjanikov. 2021. Learning delaunay surface elements for mesh reconstruction. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
22–31.

Richard Sinkhorn. 1964. A relationship between arbitrary positive matrices and doubly
stochastic matrices. The annals of mathematical statistics 35, 2 (1964), 876–879.

Sanghyun Son, Matheus Gadelha, Yang Zhou, Zexiang Xu, Ming C Lin, and Yi Zhou.
2024. DMesh: A Differentiable Representation for General Meshes. arXiv preprint
arXiv:2404.13445 (2024).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances
in neural information processing systems 30 (2017).

Qingnan Zhou and Alec Jacobson. 2016. Thingi10k: A dataset of 10,000 3d-printing
models. arXiv preprint arXiv:1605.04797 (2016).

	1 Single Mesh Fitting
	2 Fitting Collections of Meshes
	3 Learning to Mesh the Shape
	3.1 Training Details
	3.2 Additional Results

	4 Downstream Task: Mesh Repair
	References

