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1. Qualitative Analysis of Inference and Test-Time Optimization
In Figure 1, we present qualitative examples of intermediate image reconstructions and label predictions during test-time

optimization for embedding inference (see Sec. 3.5 of main paper). At step 0, we show the reconstructed image and pixel-
wise label map using the latent code (w+ ∈ W+) predicted by the encoder. Looking at the in-domain test image (first row),
we can see that the reconstructed image at step 0 recovers the overall structure of the test image including the overall hair
style, the positions of the eyes, nose and mouth. However, some smaller parts, for example the eye brow and ears, do not
match the ground truth very well. Such discrepancies at step 0 are especially pronounced for out-of-domain test images (third
and fifth row), as the encoder is trained only with in-domain images, i.e. the real human faces from CelebA. It has never seen
images like paintings and sculptures during training and therefore tries to map those out-of-domain images into the latent
space of the in-domain images with similar semantic structure. For example, the encoder-based reconstruction at step 0 of
the sculpture still resembles a real human face, but the positions of the parts almost match the ground truth except for the ear,
which would be unusual in a real human face. Since the encoder is trained with in-domain images, it cannot precisely recover
individual out-of-domain test images. Instead, it predicts common and smooth features learnt from the training dataset with
only the overall structure being consistent with the out-of-domain test images.

This is where test-time optimization comes in. As just discussed, the encoder prediction provides a strong latent code
initialization which already captures the overall semantic structure of the original image. The goal of the optimization is to
take the initial latent code predicted by the encoder and further finetune it to also match the fine details missed by the encoder
prediction. For the in-domain image, we can see that from step 0 to step 200 the reconstructed image develops a higher
similarity to the original test image, especially with respect to the fine details of the hair, eyes, eye brows and ears. For the
painting and the sculpture, the texture changes dramatically and also the semantic structure—for example, the mouth in the
painting and the ears in the sculpture—is modified to match the test image as well as the ground truth labels. Note that we
only optimize for the reconstruction quality of the image, as we do not have access to the ground truth label at test time.
Nevertheless, we still observe strong consistency between the reconstructed image and the generated label. We attribute this
to the general consistency between images and labels that is enforced during generator training by the discriminator Dm.

1.1. Ablation Study on Test-Time Optimization Parameters

We conduct an ablation study on two important hyperparameters for the test-time optimization, the number of steps per-
formed as well as the λ2 parameter, which determines the trade-off between image reconstruction quality and the “encoder-
generator” regularization that encourages the optimization trajectory to stay within the region where the encoder approxi-
mately inverts the generator (ablation results in Figure 2, left). We see that compared to step 0 (no optimization), a small
number of optimization steps helps boosting the performance for all λ2 configurations (by around 5 percent after 50 steps, for
example). We also observe that the performance peaks at around 400 optimization steps. Further optimization decreases the
segmentation performance. Usually, a higher number of optimization steps means higher image reconstruction quality. But
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Figure 1: Face Parts Segmentation Optimization Results. Image reconstructions and segmentation label predictions at different steps during the
optimization process. Step 0 corresponds to using the latent code predicted by the encoder without any further optimization. The model was trained on
CelebA-Mask data. Hence, the first example corresponds to in-domain data, while the other two examples, from the MetFace dataset, are out-of-domain
cases.

after a certain number of steps, around 400 in our case, the optimization tries to recover details such as tiny wrinkles in the
face and the optimization trajectory may propagate too far outside the meaningful region of latent space where the training
images reside. The generator was not trained to deal with such far-from-training latent codes and hence the semantic label
prediction becomes inaccurate.

We also plot the reconstruction quality measured in LPIPS vs. segmentation performance (Figure 2, right). We find that the
reconstruction quality is generally correlated with segmentation quality. However, when image reconstruction loss (LPIPS)
approaches 0—the y-axis in the plot—there seems to be a small dip in segmentation performance, most likely corresponding
to the “overfitting” effect discussed in the previous paragraph.

1.2. Probabilistic Perspective on the Inference Protocol

It is interesting to note that we can also look at our inference protocol from a fully probabilistic perspective: Given a target
image x∗, we aim to find the maximum of a log posterior distribution arg maxw+∈W+ log p(w+|x∗) and via Bayes Theorem
log p(w+|x∗) ∼ log p(x∗|w+) + log p(w+). Since the LPIPS loss is based on an L2 term in the feature space of a neural
network, we can interpret the reconstruction loss in Eq. (8) of the main paper as the negative log probability of an image
x under a product of Normal distributions that are defined in pixel as well as feature space and centered at the target image
x∗. Hence, by using LPIPS and per-pixel L2 reconstruction losses, we are effectively assuming p(x∗|w+) to be a product
of such Normal distributions. Furthermore, as discussed in Sec. 3.5 in the main paper, the “prior” p(w+) is not a tractable
distribution. Therefore, in our protocol we are essentially ignoring this term and instead regularize the objective with the
encoder-generator regularization term in Eq. (7) of the main paper.

This probabilistic perspective is interesting, because it connects our work to other generative models and also suggests
directions for future research. For example, one could employ Markov chain Monte Carlo (MCMC) techniques to sample
instead of maximize the posterior distribution p(w+|x∗) and generate diverse plausible pixel-wise label masks. Such ideas
have been explored in the context of GAN-based inpainting [4] and this also highlights our connection to the literature on
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Figure 2: Optimization Parameter Ablation Study. Left: Ablation study on the number of optimization steps performed during test-time optimization
for embedding inference, as well as on the λ2 hyperparameter. Right: Image reconstruction quality measured in LPIPS against segmentation performance.
Segmentation performance is calculated as mIoU on the out-of-domain MetFace dataset. The model for these experiments is trained with 1500 CelebA-Mask
labels.

energy-based modeling for perception, recognition and generation, where one often performs MCMC-based sampling during
training and synthesis [23, 6, 29].

2. Training Details

As described in Sec. 3.4 of the main paper, we divide training of our model into two stages. In the first stage, we train the
generator that models the joint distribution of both images and labels using a standard Generative Adversarial Network-based
(GAN) approach. In the second stage, we freeze the generator and only train the encoder. For all tasks, we resize the original
images and labels into a resolution of 256×256, both during training and inference. In the following, we describe the training
parameter and details.

GAN Training. Our implementation is based on a pytorch implementation of StyleGAN2.1 We follow the same training
setup as in [11] and use a latent spaceW with dimension 512, leaky ReLU activation functions with α = 0.2, bilinear filtering
in all up/downsampling layers, exponential moving average of generator weights, and style mixing regularization. ForDr we
use a non-saturating logistic loss with R1 regularization [21]. For Dm, we use a hinge loss [17], feature matching loss [34],
and multi-scale discriminators with 3 scales [34]. We use the Adam optimizer with hyperparameters β1 = 0, β2 = 0.99, ε =
10−8, learning rate = 0.002, batchsize = 32. For unlabeled images, we only apply random horizontal flip to the input image
and for both labeled, we apply additionally apply random affine transformations with scale factor of 0.1, transition factor of
0.15 and rotation of up to 15 degree. We train the generator until FID converges, which happens usually between 60k and
100k iterations depending on the dataset.

Encoder Training. Our encoder is based on the Feature Pyramid Network (FPN) [18]. We use a feature dimension of
512 for lateral layers. Following the original implementation of the FPN, we extract features {P2, P3, P4} corresponding to
fine to coarse feature levels. For each style code w+

i , where i indicates the number of the style layer, we use a small fully-
convolutional network to map FPN’s intermediate features to 512-dimensional vectors. With an input resolution of 256×256,
we have 14 style layers in total. We define w+

i , i ∈ [0, ..., 2] as coarse-level style codes, obtained using features from FPN’s
P4 layer. We define w+

i , i ∈ [3, ..., 6] as medium-level style codes, obtained using features from the P3 layer. Finally, we
define w+

i , i ∈ [7, ..., 13] as fine-level style codes, obtained using features from FPN’s P2 layer. For training this encoder, we
follow [25] and use the Ranger optimizer, a combination of Rectified Adam [19] with the Lookahead technique [36]. We use
a constant learning rate of 0.001 for the first 30k iterations and decrease the learning rate with a cosine decay schedule. Since
the gradient needs to backpropagate through the generator, which has many layers, we find that adding gradient clipping with
a max. norm of 2.0 helps stabilizing training. We use the same λ1 = 0.1 for all tasks. We use a batch size of 16 and train for
60k iterations.

1https://github.com/rosinality/stylegan2-pytorch
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Dataset Train Test

JSRT/SCR [28, 33] 175 72
CXR14 (unlabeled) [35] 108K -
NLM(MC) [9] - 138
NLM(Shenzhen) [9, 30] - 566
NIH [31] - 100

Table 1: Chest X-ray Lung Segmentation Datasets. Number of training and test images taken from the different datasets.

3. Inference Details
For test-time optimization, we use the Adam optimizer with β1 = 0.9, β2 = 0.999, ε = 1e−8 and learning rate = 0.1. For

all tasks, we use λ2 = 0.1. For chest x-ray segmentation, we use λ3 = 0.001 with 200 steps. For skin lesion segmentation,
we use λ3 = 0.1 with 200 steps. For the CT-MRI liver segmentation task, we use λ3 = 0.001 for CT and λ3 = 1e−5 for
MRI with 400 steps. For face parts segmentation, we use λ3 = 0.001 and 400 steps. For all tasks, we use a threshold of 0.5
to obtain the segmentation mask from the segmentation branch’s continuous output in [0, 1].

Dataset Train Test

ISIC2018 [3] 2000 594
ISIC20204 (unlabeled) [27] 33126 -
PH2 [20] - 200
DermIS [5] - 69
DermQuest [5] - 98

Table 2: Skin Lesion Segmentation Datasets. Number of training and test images taken from the different datasets.

4. Dataset Details
For the chest x-ray segmentation task, we use CXR14 [35] as unlabeled dataset and JSRT [28, 33] as labeled dataset. We

combine these two datasets and split into a part for training, consisting of both labeled and unlabeled x-rays, as well as a fully
labeled part for in-domain testing. Furthermore, we use three additional datasets, NLM(MC) [9], NLM(Shenzhen) [9, 30]
and NIH [31], for out-of-domain testing only (see Table 1 for splits). JSRT is a small collection of high quality chest x-ray
datasets with balanced gender and marker-removal preprocessing. The patients are in standard pose. The other three datasets
are collected from different medical centers with varying patient poses and scales, among which NIH varies the most in terms
of sensor quality and patient poses. We follow [22] using histogram equalization and gamma correction as preprocessing
steps. The same preprocessing is applied for all baseline experiments.

For skin lesion segmentation, we use ISIC2020 [27] as unlabeled dataset and ISIC2018 [3] as labeled dataset. We similarly
split the combined data into a part for training and a separate labeled part for in-domain testing. We use three further datasets,
PH2 [20], DermIS [5] and DermQuest [5], as out-of-domain test datasets (see Table 2 for splits). The lesion segmentation
ground truth of ISIC2018 is collected using a combination of fully-automated, semi-automated, and manual annotation
methods. Hence, it contains coarse annotations as also reported by other papers [24]. We did not filter or preprocess the
original datasets.

For the cross-domain CT-MRI liver segmentation task, we use LITS2017-test [1] with 70 CT volumes as unlabeled dataset
and LITS2017-train [1] with 131 volumes in total as labeled dataset. We further split LITS2017-train into train and test sets
with 118 and 13 volumes respectively as labeled datasets for training and in-domain testing. We use the other two MRI
datasets CHAOS-T1-in [12], and CHAOS-T1-out [12] as out-of-domain test datasets (see Table 3 for details). T1-in denotes
T1-weighted MRI for “in”-phase mode and T1-out denotes T1-weighted MRI for “out”-phase mode. LITS2017 is a collection
of liver CTs with liver and tumor segmentations. We only use the liver class and merge the tumor class into the background
class for the whole dataset. As preprocessing of the raw CT data, we clip the attenuation coefficient in a range between−200
and 400 and normalize it by subtracting the minimum and dividing by the signal range in a slice-wise manner. The CHAOS
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Dataset Train Test

LITS2017-train [1] 118 13
LITS2017-test4 (unlabeled) [1] 70 -
CHAOS-T1-in [12, 13, 14] - 20
CHAOS-T1-out [12, 13, 14] - 20

Table 3: CT-MRI Liver Segmentation Datasets. Number of training and test patient volumes taken from the different datasets.

dataset contains multi-organ MRIs with different sequences. We only use the liver segmentation class and merge other classes
into the background class. As preprocessing, we clip the raw MR signal in a range between the 0.1 and 99.9 percentiles and
normalize it by subtracting the minimum and dividing by the signal range in a slice-wise manner. Note that the CT and MRI
volumes have different sensor poses and might have different regions of interest. We did not do any cropping, resampling, or
alignment, but only the slice-wise preprocessing described above.

For face parts segmentation, we split the CelebA-Mask dataset [16] into CelebA-mask-u with 28k images as unlabeled
dataset and CelebA-mask-l with 2k images and segmentation labels. We further devide the labeled portion of the data
into train and test sets. For out-of-domain testing, we manually annotate 40 images randomly selected from the MetFace
dataset [10], which is a collection of human face paintings and sculptures (see Table 4). We merge the 19 label classes
originally defined in the CelebA-Mask dataset into 8 classes (background, ear, eye, eyebrow, skin, hair, mouth, nose) and we
follow the same annotation protocol when labelling the selected images from the MetFace dataset.

Dataset Train Test

CelebA-mask-l [16] 1500 500
CelebA-mask-u4 (unlabeled) [16] 28000 -
MetFace-40 [10] - 40

Table 4: Face Parts Segmentation Datasets. Number of training and test images taken from the different datasets.

5. Baseline Implementations and Metrics Details
As described in the main paper, our baseline methods include the fully supervised U-Net [26] and DeepLabV2 [2] as

well as the semi-supervised segmentation methods MT [32], AdvSSL [7] and GCT [15]. The implementations of the semi-
supervised segmentation approaches are based on the PixelSSL2 repository [15] and we also use the DeepLabV2 implemen-
tation from this repository. The U-Net implementation is based on a public pytorch implementation.3 The hyperparameters
for MT, advSSL and GCT are kept at their defaults.

For all baseline methods, we use the Adam optimizer with a learning rate of 0.00025 and a batch size of 16. For the
semi-supervised methods, the batch size for unlabeled data is set to 8. We train all baseline models for 10k iterations and
choose the best model based on validation set performance.

For the evaluation metrics, we follow the common practice in the literature. For chest x-ray lung segmentation and CT-
MRI transfer liver segmentation, we report the Dice score per patient, with each patient’s Dice calculated asDSC = 2|A∩B|

|A|+|B| ,
where A is the prediction and B is the ground truth. For skin lesion segmentation, we report the Jaccard index per patient.
The Jaccard index is calculated as JC = |A∩B|

|A∪B| for each patient. For face parts segmentation, we report mean Intersection

over Union (mIoU) over all classes, excluding the background class. IoU is generally calculated as IoU = |A∩B|
|A∪B| . Hence,

IoU and JC are essentially the same. mIoU is popular for computer vision tasks, where usually the pixel-wise mean IoU is
computed as mIoU = Σi|Ai∩Bi|

Σi|Ai∪Bi| for images i. The term JC is popular in the medical literature, where usually the patient-

wise/per-image mean JC is calculated as JC = Σi
|Ai∩Bi|
|Ai∪Bi| . For validation, we follow the original PixelSSL repository and

use mIoU per image for all experiments, except for CT-MRI transfer experiments, where we modify it to mean IoU per
2https://github.com/ZHKKKe/PixelSSL/tree/master/pixelssl
3https://github.com/milesial/Pytorch-UNet
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Trained with 8 labeled examples Trained with 20 labeled examples Trained with 118 labeled examples

Method CT MRI T1-in MRI T1-out CT MRI T1-in MRI T1-out CT MRI T1-in MRI T1-out

U-Net 0.7610 0.2568 0.3293 0.8229 0.3428 0.2310 0.8680 0.4453 0.4177
DeepLab 0.7591 0.2848 0.3286 0.8001 0.4019 0.3798 0.9056 0.4390 0.3767

MT 0.7815 0.3589 0.0955 0.8197 0.5319 0.1908 0.8834 0.4873 0.2596
AdvSSL 0.8005 0.5381 0.5855 0.8105 0.5409 0.4087 0.8551 0.4003 0.3548
GCT 0.6997 0.4733 0.4091 0.7951 0.3469 0.4620 0.9085 0.4341 0.3816

Ours-NO 0.8036 0.4811 0.5135 0.8462 0.5538 0.4511 0.8603 0.5055 0.5633
Ours 0.8747 0.5565 0.5678 0.8961 0.4989 0.4575 0.9169 0.5097 0.5243

Table 5: CT-MRI Transfer Liver Segmentation. Numbers are Dice per patient. Here, CT is the in-domain data set on which we both train and evaluate.
We also evaluate on additional unseen MRI data [12] for liver segmentation. Ours as well as the semi-supervised methods use additional 70 CT volumes
from the LITS2017 [1] testing set as unlabeled data samples for training.

pixel. The original implementation in the repository does not include empty slices, where the liver is not visible, in the mIoU
calculation. We modify this to calculate pixel-wise mIoU using all slices, including the empty ones.

For final evaluation, we follow the popular metrics in the literature. As described above, we report Dice per patient for
both x-ray and CT-MRI experiments. Note that each x-ray image corresponds to one patient, while each CT/MR volume
from one patient consists of many slices. mIoU per pixel is reported for face parts segmentation and mean JC per patient for
skin segmentation.

6. Additional Results
6.1. Baselines on CT-MRI Liver Segmentation Task

In the main paper, we only report the supervised baseline performance of U-Net for comparison to our method. Here, we
provide additional results from our other semi-supervised and fully-supervised baselines, both quantitatively (see Table 5)
and also qualitatively (see Figure 3). Note that we did not update our method’s results; only semi-supervised baseline results
of MT, AdvSSL and GCT as well as the fully-supervised baseline results of DeepLabV2 are added to the table. Our method
outperforms these baselines on in-domain CT test data by a large margin for all training setups with different numbers of
labeled images and it is still robust during cross-domain application on MRI data. In two cases, AdvSSL and GCT slightly
outperform our method on MRI T1-out data, but their in-domain performance is significantly lower than our method’s by up
to 10 percent. We also observe that some methods are not able to predict anything for out-of-domain MR test images; for
example, see qualitative results of MT and AdvSSL in Figure 3.

6.2. Test-time Optimization Visualizations

We also visualize the test-time optimization trajectories for embedding inference of test images. Please see Figure 4 for
chest x-ray optimization results, Figure 5 for skin lesion optimization results, and Figure 6 for CT-MRI liver optimization
results.

6.3. Latent Code Interpolation

We show interpolations between two random latent codes including both images and their segmentation labels generated
by our generator on the CelebA-Mask dataset (see Figure 7). Note that the interpolation results are smooth between two
random latent codes and the images and labels are consistent. These interpolations are performed in Z-space. We further
show interpolation results between random latent codes and latent codes obtained by test-time optimization from other out-
of-domain datasets. These interpolations are performed in W+-space, because embedding inference takes place in W+.
Please see Figure 8 for inputs from MetFace dataset, Figure 9 for inputs from Webcaricature [8], which contains caricatures
of human faces, and Figure 10 for extreme out-of-domain inputs, including animal faces and a house that resembles a human
face.

6.4. Class-Wise Face Parts Segmentation Results

We provide additional class-wise face parts segmentation results for different numbers of labeled data used during training.
Please see Tables 6, 7, and 8. Note that our method outperforms other baseline methods in most classes, both in- and out-of-
domain by a large margin. We also observe that test-time optimization improves class-wise performance, especially for rare
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and “small” classes, such as ear and eyebrow.

CelebA-Mask (In-Domain)

Method Ear Eye Eyebrow Skin Hair Mouth Nose Mean

U-Net 0.3381 0.4429 0.5138 0.7575 0.7022 0.5988 0.5259 0.5764
DeepLab 0.2706 0.4828 0.3921 0.7746 0.6654 0.6308 0.6718 0.5554

MT 0.0000 0.0000 0.0000 0.5699 0.1860 0.0004 0.0010 0.1082
AdvSSL 0.2908 0.3275 0.3945 0.7572 0.5932 0.6094 0.6271 0.5142
GCT 0.1317 0.1926 0.0295 0.6866 0.5565 0.4520 0.5366 0.3694

Ours-NO 0.4855 0.6004 0.5403 0.8383 0.5659 0.7139 0.7872 0.6473
Ours 0.6400 0.6069 0.6071 0.8531 0.5878 0.7437 0.7925 0.6902

MetFace-40 (Out-Of-Domain)

Method Ear Eye Eyebrow Skin Hair Mouth Nose Mean

U-Net 0.1036 0.1568 0.2371 0.4840 0.3718 0.2272 0.3817 0.2803
DeepLab 0.1016 0.3957 0.2479 0.6569 0.4784 0.5052 0.5975 0.4262

MT 0.0000 0.0000 0.0000 0.6157 0.3737 0.0000 0.0009 0.1415
AdvSSL 0.1247 0.1624 0.2526 0.7014 0.4795 0.4956 0.6018 0.4026
GCT 0.0421 0.1247 0.0192 0.5929 0.3976 0.4095 0.5403 0.3038

Ours-NO 0.2982 0.4986 0.3972 0.8114 0.5502 0.6034 0.6953 0.5506
Ours 0.4395 0.4674 0.4704 0.8293 0.5452 0.6581 0.7082 0.5883

Table 6: CelebA-Mask Segmentation Results using 30 Labels during Training. CelebA-Mask segmentation results for different face parts for in-
domain data (real faces, top part) and for out-of-domain data (MetFaces, bottom part).

CelebA-Mask (In-Domain)

Method Ear Eye Eyebrow Skin Hair Mouth Nose Mean

U-Net 0.5095 0.5686 0.6040 0.8414 0.7790 0.7627 0.7513 0.6880
DeepLab 0.4313 0.6308 0.4905 0.8317 0.7392 0.7174 0.7729 0.6591

MT 0.4125 0.4946 0.4035 0.7969 0.7370 0.6398 0.6153 0.5857
AdvSSL 0.4902 0.6465 0.5103 0.8517 0.7567 0.7453 0.7912 0.6846
GCT 0.4411 0.5714 0.3623 0.8502 0.7977 0.6965 0.7631 0.6403

Ours-NO 0.5064 0.6474 0.5437 0.8516 0.7834 0.7601 0.8183 0.7016
Ours 0.6722 0.6900 0.6101 0.8798 0.8164 0.8173 0.8343 0.7600

MetFace-40 (Out-Of-Domain)

Method Ear Eye Eyebrow Skin Hair Mouth Nose Mean

U-Net 0.1036 0.1568 0.2371 0.4840 0.3718 0.2272 0.3817 0.2803
DeepLab 0.1804 0.4882 0.3494 0.7437 0.5372 0.5491 0.6434 0.4988

MT 0.2217 0.2709 0.2603 0.6986 0.5048 0.5031 0.5537 0.4305
AdvSSL 0.1913 0.4663 0.3184 0.7374 0.5620 0.5745 0.6708 0.5029
GCT 0.1014 0.3530 0.1819 0.7898 0.6430 0.5838 0.6715 0.4749

Ours-NO 0.2845 0.5260 0.4011 0.8000 0.6141 0.6108 0.7133 0.5643
Ours 0.5030 0.5517 0.4226 0.8459 0.6810 0.6702 0.7612 0.6336

Table 7: CelebA-Mask Segmentation Results using 150 Labels during Training. CelebA-Mask segmentation results for different face parts for
in-domain data (real faces, top part) and for out-of-domain data (MetFaces, bottom part).
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CelebA-Mask (In-Domain)

Method Ear Eye Eyebrow Skin Hair Mouth Nose Mean

U-Net 0.5290 0.6608 0.6219 0.8708 0.8129 0.7955 0.7711 0.7231
DeepLab 0.6135 0.6836 0.5911 0.8774 0.8252 0.7957 0.8242 0.7444

MT 0.5396 0.6586 0.5317 0.8619 0.8104 0.7688 0.7951 0.7094
AdvSSL 0.6708 0.7254 0.6309 0.8955 0.8464 0.8376 0.8445 0.7787
GCT 0.6467 0.6991 0.6108 0.8932 0.8538 0.8174 0.8408 0.7660

Ours-NO 0.5143 0.6770 0.5479 0.8574 0.7937 0.7758 0.8201 0.7123
Ours 0.6968 0.7470 0.6150 0.8893 0.8238 0.8539 0.8416 0.7810

MetFace-40 (Out-Of-Domain)

Method Ear Eye Eyebrow Skin Hair Mouth Nose Mean

U-Net 0.1026 0.3393 0.3117 0.6922 0.5347 0.4039 0.4762 0.4086
DeepLab 0.2549 0.5120 0.4026 0.8158 0.6269 0.6155 0.7350 0.5661

MT 0.1890 0.5135 0.3925 0.7206 0.5266 0.5663 0.6837 0.5132
AdvSSL 0.3241 0.5340 0.4236 0.8345 0.6556 0.6642 0.7604 0.5995
GCT 0.2467 0.5486 0.4393 0.8434 0.6753 0.6744 0.7563 0.5977

Ours-NO 0.2795 0.5422 0.3880 0.8114 0.6370 0.6173 0.7492 0.5749
Ours 0.5224 0.6025 0.4810 0.8534 0.6995 0.6957 0.7915 0.6633

Table 8: CelebA-Mask Segmentation Results using 1500 Labels during Training. CelebA-Mask segmentation results for different face parts for
in-domain data (real faces, top part) and for out-of-domain data (MetFaces, bottom part).

image GT DeepLab MT AdvSSL GCT Ours

In
-D

om
ai

n
M

R
-T

1-
in

M
R

-T
1-

ou
t

Figure 3: CT-MRI Liver Segmentation. Qualitative examples for both in-domain (CT, first row) and out-of-domain (MRI, row 2-5) data. Compared to
the baseline methods, Ours is more robust to out-of-domain input, which the other methods do not predict well or not at all.
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GT Step 0 Step 25 Step 50 Step 75 Step 100 Step 150 Step 200 Step 400

Figure 4: Chest X-ray Segmentation Optimization. Qualitative examples for reconstructions and segmentation label predictions at different optimization
steps. Step 0 means using the latent code predicted by the encoder without any iterative optimization.
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GT Step 0 Step 25 Step 50 Step 75 Step 100 Step 150 Step 200 Step 400

Figure 5: Skin Lesion Segmentation Optimization. Qualitative examples for reconstructions and segmentation label predictions at different optimization
steps. Step 0 means using the latent code predicted by the encoder without any iterative optimization.
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GT Step 0 Step 25 Step 50 Step 75 Step 100 Step 150 Step 200 Step 400

Figure 6: CT-MRI Liver Segmentation Optimization. Qualitative examples for reconstructions and segmentation label predictions at different opti-
mization steps. Step 0 means using the latent code predicted by the encoder without any iterative optimization.
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Start 1/10 2/10 3/10 4/10 5/10 6/10 7/10 8/10 9/10 End

Figure 7: Interpolations between Random Latent Codes on CelebA-Mask. Linear interpolations between two random latent codes z1 ∈ Z and
z2 ∈ Z . We show both the interpolated images and their semantic segmentation labels. The results show that the generative model learnt a smooth
latent space with meaningful images along the interpolation path. Furthermore, we observe consistency between images and predicted labels along the
interpolation path.
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Start 1/10 2/10 3/10 4/10 5/10 6/10 7/10 8/10 9/10 End

Figure 8: Interpolations between Random Latent Codes and MetFaces. Linear interpolations between random latent codes and latent codes of
MetFace images. We obtain the MetFace latent codes by performing inverse optimization. The interpolation is done in W+-space. We show both the
interpolated images and their semantic segmentation labels. The results show that the generative model learnt a smooth latent space with meaningful images
along the interpolation path. Furthermore, we observe consistency between images and predicted labels along the interpolation path. This is noteworthy,
since we are interpolating beyond the training domain.
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Start 1/10 2/10 3/10 4/10 5/10 6/10 7/10 8/10 9/10 End

Figure 9: Interpolations between Random Latent Codes and Cartoon Faces. Linear interpolations between random latent codes and latent codes of
selected Cartoons. We obtain the Cartoon latent codes by performing inverse optimization. The interpolation is done in W+-space. We show both the
interpolated images and their semantic segmentation labels. The results show that the generative model learnt a smooth latent space with meaningful images
along the interpolation path. Furthermore, we observe consistency between images and predicted labels along the interpolation path. This is noteworthy,
since we are interpolating beyond the training domain.
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Start 1/10 2/10 3/10 4/10 5/10 6/10 7/10 8/10 9/10 End

Figure 10: Interpolations between Random Latent Codes and Extreme Out-Of-Domain Faces. Linear interpolations between random latent codes
and latent codes of selected extreme out-of-domain faces and face-like objects. We obtain the extreme out-of-domain faces’ latent codes by inverse
optimization. The interpolation is done in W+-space. We show both the interpolated images and their semantic segmentation labels. The results show that
the generative model learnt a smooth latent space with meaningful images along the interpolation path. Furthermore, we observe reasonable consistency
between images and predicted labels along the interpolation path, which we consider remarkable, since the considered images are extremely different
compared to the real faces used for training the model.
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