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We start the supplement by providing more details on our method in
Section 1, as well as further details of different isosurfacing methods
in Section 2. Section 3 describes the experimental setting along with
the baselines and depicts more qualitative results. Finally, in Sec-
tion 4, we provide additional details and results for our applications.

1 DETAILS ON FLEXICUBES

1.1 Tetrahedral Mesh Extraction
In Section 4.5 of the main paper, we describe the ambiguity in con-
nectivity when extending the tetrahedralization strategy proposed
by Liang and Zhang [2014] to Dual Marching Cubes (DMC). The am-
biguity arises when a cell contains multiple extracted mesh vertices.
Connecting the incorrect vertices leads to intersections or holes in
the extracted tetrahedral mesh. We propose two rules to address the
ambiguity cases. Recall that the tetrahedra are formed in two cases:

(1) For each grid edge connecting two grid vertices with different
signs, we first form a four-sided pyramid by connecting one
of the grid vertices with four mesh vertices that correspond
to the grid edge and then subdivide the pyramid into two
tetrahedra. This case is uniquely determined in all DMC
configurations (see bottom-left subfigure of Figure 10 in the
main paper).

(2) For each grid edge connecting two grid vertices with the
same sign, the tetrahedron is formed by the two grid vertices
and two vertices in consecutive adjacent cells (referring to
top-left subfigure in Figure 10 in the main paper). In this
case, we first identify the face shared by the adjacent cells.
We then identify an edge of the face with different signs
and select the mesh vertex corresponding to the identified
edge. Referring to Figure 7 in the main paper, in cases C6,
C10, C12, and C15, it is obvious that the formed tetrahedra
following this rule are always inside the primal faces. Note
that the described rule can be implemented efficiently with
a precomputed lookup table.

In most cases, these rules address the ambiguity and result in correct
tetrahedralization of the interior volume. However, for case C18, the
interior volume is not completely filled by the formed tetrahedra.
Although this case rarely happens during optimization and does
not obstruct the downstream application, it remains a limitation of
our method.

1.2 Adaptive Mesh Resolution
In Section 4.6 of the main paper, we describe a constraint applied to
the SDF on octree vertices to avoid cracks or non-manifold surfaces
being produced by DMC. Here we provide more details on how this
constraint is enforced. As a preliminary, Ju et al. [2002] propose a
method to generate adaptive contours from an octree representation.
Their method identifies the minimal edges of the octree, i.e., the
edgeswhich do not contain a finer edge of the adjacent cell, as well as
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four cells sharing each minimal edge with a recursive call. We refer
readers to the original paper for more details about the algorithm.
We repurpose this algorithm to identify the vertices whose SDF
values we constrain. Specifically, for the four cells sharing a minimal
edge, we check the four pairs of adjacent faces among these cells. If a
finer face 𝐹𝑓 is adjacent to a coarser face 𝐹𝑐 , for every vertex 𝑣 𝑓 of 𝐹𝑓
that is not a vertex of 𝐹𝑐 , we compute and store the bilinear weights
of 𝑣 𝑓 with respect to the vertices of 𝐹𝑐 . During optimization, the
SDF value of 𝑣 𝑓 is not optimized. Instead, it is directly interpolated
using precomputed bilinear weights applied to the SDF values on
𝐹𝑐 . Note that the constrained vertices only need to be re-identified
when there is an update to the octree structure.

1.3 Addressing Ambiguity in DMC Configurations
In rare cases, the original Dual Marching Cubes algorithm can
produce non-manifold meshes. We follow the solution described
in Wenger [2013] to address the ambiguity of cases C16 and C19
in the DMC configurations. With this modification applied, the ex-
tracted surface of FlexiCubes in the uniform grid setting is always
2-manifold.

2 ANALYSIS
This section provides further details of the experiment shown in
Figure 4 in the main paper, where we show the optimization process
for a collection of isosurfacing algorithms.
In the analysis, we follow a similar experimental setup as Sec-

tion 5.1 in the main paper. Specifically, we start by initializing the
SDF to represent a sphere for all methods. In each iteration, we then
extract the surface mesh from the SDF (defined on a grid). Finally,
we render the reconstructed mesh from randomly sampled camera
views (same for all methods) and compute the differences with the
ground truth depth and silhouette image. We also compute the SDF
loss, where we randomly sample 1000 points and evaluate their SDF
values w.r.t the ground truth mesh, as well as the extracted mesh,
and minimize the differences between two SDF values. We use L1
loss for the silhouette image, L2 norm for the depth image, and MSE
loss for the SDF. The combinedd loss is back-propagated to the SDF
through the differentiable isosurfacing layers, which we detail in the
next paragraph. We use the same optimizer and learning rate for all
methods. For FlexiCubes, we leverage the regularizers described in
Section 4.7 of the main paper. We also leverageLsign for all methods
to remove floater and internal geometry. In this analysis, the grid
resolution is set to 64 for the tetrahedral grid used by DMTet, and
48 for the voxel grid used by the other methods to roughly match
the number of triangles in the output mesh.

2.1 Baselines
We use the official implementation of DMTet from the nvdiffrec
codebase1. For Dual Contouring (DC) and Marching Cubes (MC),

1https://github.com/NVlabs/nvdiffrec
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there are, to the best of our knowledge, no differentiable implemen-
tations available, so we implemented these methods in PyTorch to
leverage the autograd functionalities. Specifically, we adapted the
MC variant from Lorensen and Cline [1987], following the imple-
mentation of the Marching Tetrahedra function in DMTet, such that
the zero-crossings on grid edges are computed in a differentiable
manner. For DC, we utilize PyTorch’s linear solver, lstsq2, to solve
the quadratic error function (QEF) given in Equation 2 (main paper).
The gradient direction at any point, ∇𝑠 (𝑢𝑒 ), is approximated by
local differentiation over the SDF computed via trilinear interpo-
lation. To avoid the solution exploding to a distant location when
∇𝑠 (𝑣𝑒 ) are nearly coplanar, we followed the DC implementation in
the NDC source code3 and add a regularization term which biases
the solution toward the centroid of associated zero-crossings 𝑉𝐸 .
Specifically, Equation 2 is regularized as:

𝑣𝑑 = argmin
𝑣𝑑

∑︁
𝑢𝑒 ∈Z𝑒

∇𝑠 (𝑢𝑒 ) · (𝑣𝑑 − 𝑢𝑒 ) + 𝜆 |𝑣𝑑 − 𝑢𝑒 |, (1)

where 𝑢𝑒 = 1
|𝑉𝐸 |

∑
𝑢𝑒 ∈𝑉𝐸

𝑢𝑒 is the centroid of the zero-crossing
points and 𝜆 is the scalar weight that controls the strength of the
regularizer. We ablate two DC versions with 𝜆 = 1 and 𝜆 = 0.01, de-
noted as 𝐷𝐶𝑟𝑒𝑔1 and 𝐷𝐶𝑟𝑒𝑔001 respectively. In addition, we compare
with a DC variant which directly takes the centroid as the mesh
vertex, denoted as 𝐷𝐶𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 . Please refer to Figure 2 in the main
paper for illustrations of these regularized versions of DC. For NDC,
we use a pretrained neural network provided by the authors to
extract the isosurface. During optimization, we freeze the network
parameters and only optimize the SDF values.

3 EXPERIMENTAL DETAILS
This section provides additional details for the experiment settings
in Section 5 in the main paper.

3.1 Baselines
The implementation of the baseline methods used in this experiment
is described in Section 5.1 of the main paper. The inputs to𝑀𝐶𝑆𝐷𝐹

and 𝑁𝐷𝐶𝑆𝐷𝐹 are the ground truth SDF values evaluated at grid
vertices. Since the pretrained neural network in𝑁𝐷𝐶𝑆𝐷𝐹 is sensitive
to the scale of the SDF inputs, we use the function4 provided by
the authors to compute the SDF. For 𝐷𝐶ℎ𝑒𝑟𝑚𝑖𝑡𝑒 , which requires
gradients as input, we additionally compute the gradient of the SDF
at zero-crossings using finite differences. The regularizer weight 𝜆
in Eqn. 1 is determined independently for each cube in an adaptive
manner, following the DC implementation by Chen et al. [2022].
Specifically, we begin by solving Eqn. 1 with a small 𝜆, and iteratively
double the value of 𝜆 until the solution with the updated QEF falls
inside the cube or 𝜆 reaches the limit. The initial 𝜆 is set to 0.01
and the limit is 106 in our experiment. This approach is very time-
consuming to evaluate and hard to leverage in a general gradient-
based mesh optimization framework. Therefore, we only adopt it
in this main experiment (Section 5 in the main paper) but used

2https://pytorch.org/docs/stable/generated/torch.linalg.lstsq.html#torch.linalg.lstsq
3https://github.com/czq142857/NDC
4https://github.com/czq142857/NDC/blob/9054e20f55013d031af9e3a2c91f5cab75837bc4/
data_preprocessing/get_groundtruth_NDC/SDFGen

fixed values of 𝜆 in the optimization process discussed in Section 2
(Figure 4 in the main paper) for completeness.

For the mesh reconstruction pipeline, we leverage the codebase
of nvdiffrec5, and replace the image loss with depth and SDF
losses described in the main paper. We also leverage the mask loss
in nvdiffrec, and the two regularization losses Lsign and Ldev in
Eqnuation 8 and Equation 9 from the main paper. We use L1 loss for
mask, L2 norm for depth and MSE loss for SDF. We scale the mask
loss, depth loss, SDF loss and Ldev by 1, 10, 2000, and 1 respectively.
The scale of Lsign decays from 0.2 to 0.01 linearly during training.
We optimize each shape for 1000 iterations with a learning rate of
0.01.
For all isosurfacing methods, we use uniform grids in [−1, 1]3.

We center each object around the origin and scale it such that the
longest side of its bounding-box equals 1.8. For NDC, the effective
resolution of the grid is reduced by the padding of the network.
Therefore, we increase the grid resolution for NDC by the padding
size for a fair comparison with other methods.

3.2 Evaluation Metrics
We provide details on all the evaluation metrics we used in the main
paper.

Chamfer Distance (CD). This metric measures the distance be-
tween two point clouds by nearest neighbor search. To measure the
CD between meshes, we sample each mesh to get a point cloud of
size 100,000. Note that for the nvdiffrec NeRF synthetic dataset
evaluation (Table 5 in the main paper), we use a different version of
Chamfer Distance, computed only on visible triangles, using 2.5M
points on meshes with another scale than in the main experiment, so
the CD numbers from Table 5 cannot be directly compared against
the CD scores reported in Section 5.

F1-score. The harmonic mean of precision and recall. To compute
precision and recall, we sample each mesh into a point cloud of
the same size as CD and search for the nearest neighbor points.
When computing the precision, if the distance from a point on the
predicted mesh to the GT point cloud is small enough (threshold =
0.003), we count it as a true positive point. Otherwise, it is counted
as a false positive point. When computing the recall, if the distance
from a point on the GT mesh to the predicted mesh is small enough
(threshold = 0.003), we count it as a true positive point. Otherwise,
we count it as a false negative point.

Edge Chamfer Distance (ECD) and Edge F-score (EF1). These met-
rics are used in prior works [Chen and Zhang 2021; Chen et al. 2022]
for evaluating the reconstruction of sharp features (edge points).
First, for each point in the sampled point cloud, we look at the dot
products between its normal and the normal of its neighbor points.
If the mean dot product is smaller than a threshold (0.2), the point
is treated as an edge point. ECD and EF1 measure the Chamfer
Distance and F1-score between edge point sets.

The percentage of inaccurate normals (IN> 5◦). For each point in
the sampled point cloud, we store the normal of the face that the
point was generated from. Given a predicted mesh and a GT mesh,

5https://github.com/NVlabs/nvdiffrec

https://pytorch.org/docs/stable/generated/torch.linalg.lstsq.html#torch.linalg.lstsq
https://github.com/czq142857/NDC
https://github.com/czq142857/NDC/blob/9054e20f55013d031af9e3a2c91f5cab75837bc4/data_preprocessing/get_groundtruth_NDC/SDFGen
https://github.com/czq142857/NDC/blob/9054e20f55013d031af9e3a2c91f5cab75837bc4/data_preprocessing/get_groundtruth_NDC/SDFGen
https://github.com/NVlabs/nvdiffrec
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we search for nearest point pairs from one to another. We compute
the angles between the normals stored on two points, and report
the percentage of pairs having angles larger than 5 degrees.

Aspect Ratio (AR) and Radius Ratio (RR). AR and RR are different
measures of triangle regularity, with a smaller value indicates better
triangle quality. While there exist different definitions of AR and RR
in the literature, we follow the definition in the PyVista6 codebase
in our evaluations.

Min and max angles. Given a triangle on the extracted mesh, we
compute its three angles in degrees and select the max and min
angles.

NV(%). The average percentage of non-manifold vertices.

NE(%). The average percentage of non-manifold edges.

SI(%). The average percentage of self-intersecting triangles.

SA<10◦. The average percentage of triangles with the smallest
angle <10◦.

3.3 Adaptive Meshing
We provide experimental details for results demonstrated in Fig-
ure 14 in the main paper. Our goal is to reconstruct the target object
with adaptive mesh resolution achieved by jointly optimizing mesh
topology and the octree structure. We begin the optimization with
a low-resolution, uniform voxel grid. During optimization, we keep
a running average of the objective loss for each cell, computed by
averaging the loss from all mesh vertices extracted from it. After the
shape converges, we subdivide the cells in the octree with objective
loss larger than a preset threshold of 0.04. Iterating this process, we
obtain the adaptive mesh shown in Figure 14 without precomputed
octree structure on GT geometry. Note that we apply the constraint
described in Section 1.2 during optimization.

3.4 Additional Results
We include more visual examples in Figure 3, comparing all methods.
Please zoom in the pdf to see the differences. Additional statistic
are included in Table 1.
In Figure 1 we show how FlexiCubes robustly reconstructs the

same object under different rotations. Note that the MC reconstruc-
tion quality deteriorates when features are not axis-aligned. We
show the influence of the regularizer Ldev (Equation 8 in the main
paper) in Figure 2.

4 APPLICATIONS
In this section, we provide a detailed description of the experimental
setting and additional results for each application we did in the main
paper.

4.1 Photogrammetry Through Differentiable Rendering
Our photogrammetry application is based on nvdiffrec, which
jointly optimizes shape, materials, and lighting from image supervi-
sion [Hasselgren et al. 2022; Munkberg et al. 2022]. We followed the
6https://docs.pyvista.org/api/core/_autosummary/pyvista.DataSet.compute_cell_
quality.html

Table 1. Quantitative results on Mesh Reconstruction. CD: Chamfer dis-
tance (1e-5), F1: F1 score. ECD, edge chamfer distance (1e-2). EF1: edge F1.
NV: Non-mainfold vertices, NE: Non-manifold edges, SI: self-intersection.
IN>5◦: normal angle difference > 5◦. SA: small angle. # V: number of vertices.
#F: number of triangles.

323 CD↓ F1 ↑ ECD ↓ EF1 ↑ #V #T NV(%) ↓ NE(%) ↓ SI(%) ↓ IN>5◦(%) ↓ SA<10◦(%) ↓
𝑀𝐶𝑆𝐷𝐹 22.65 0.28 5.56 0.08 2387 4771 0.0 0.0 0.0 85.6 24.7
𝐷𝐶ℎ𝑒𝑟𝑚𝑖𝑡𝑒 17.15 0.38 4.82 0.11 2360 4775 0.131 0.349 1.882 74.43 9.59
𝑁𝐷𝐶𝑆𝐷𝐹 17.61 0.42 3.55 0.13 1877 3801 0.155 0.378 0.232 72.60 0.77
MC 9.11 0.54 2.60 0.13 2573 5146 0.0 0.0 0.0 66.61 11.74
DMTet(32) 11.56 0.52 3.64 0.17 1691 3387 0.0 0.0 0.0 66.22 12.32
DMTet(40) 8.35 0.58 3.64 0.20 2626 5259 0.0 0.0 0.0 61.21 12.72
FlexiCubes 7.01 0.64 2.11 0.26 2400 4800 0.0 0.0 0.715 50.52 2.99
643 CD↓ F1 ↑ ECD ↓ EF1 ↑ #V #T NV(%) ↓ NE(%) ↓ SI(%) ↓ IN>5◦(%) ↓ SA<10◦(%) ↓
𝑀𝐶𝑆𝐷𝐹 6.84 0.55 2.55 0.14 9881 19783 0.0 0.0 0.0 80.67 24.32
𝐷𝐶ℎ𝑒𝑟𝑚𝑖𝑡𝑒 5.90 0.61 3.80 0.23 9828 19769 0.043 0.139 1.483 63.34 8.67
𝑁𝐷𝐶𝑆𝐷𝐹 6.16 0.57 1.22 0.26 9828 19769 0.043 0.140 0.130 55.22 0.48
MC 6.33 0.66 1.25 0.25 10459 20801 0.0 0.0 0.0 52.37 11.90
DMTet(64) 7.50 0.66 3.77 0.28 6783 13566 0.0 0.0 0.0 50.20 14.41
DMTet(80) 5.17 0.66 3.59 0.29 10385 20784 0.0 0.0 0.0 48.66 17.88
FlexiCubes 4.87 0.70 0.71 0.43 9916 19843 0.0 0.0 0.103 34.87 1.97
1283 CD↓ F1 ↑ ECD ↓ EF1 ↑ #V #T NV(%) ↓ NE(%) ↓ SI(%) ↓ IN>5◦(%) ↓ SA<10◦(%) ↓
𝑀𝐶𝑆𝐷𝐹 4.72 0.68 1.13 0.33 40164 80374 0.0 0.0 0.0 77.23 24.25
𝐷𝐶ℎ𝑒𝑟𝑚𝑖𝑡𝑒 4.59 0.69 3.82 0.40 40128 80360 0.017 0.069 1.280 53.98 7.95
𝑁𝐷𝐶𝑆𝐷𝐹 5.04 0.65 0.79 0.43 40129 80361 0.017 0.036 0.084 43.2 0.37
MC 4.51 0.72 1.32 0.44 38645 77212 0.0 0.0 0.0 42.56 12.46
DMTet(128) 4.98 0.74 1.50 0.39 23535 47001 0.0 0.0 0.0 48.86 23.52
FlexiCubes 4.31 0.71 0.42 0.51 38923 77845 0.0 0.0 0.017 30.57 0.79

M
C

D
M
Te

t
Fl
ex

iC
ub

es

Pose A Pose B Pose C

Fig. 1. We reconstruct the same model with three different poses. Marching
Cubes performs well when features are axis-aligned, but show stair step
artifacts in the other poses. DMTet performs more robustly, but produces
many sliver triangles. FlexiCubes has more uniform triangles and no stair
step artifacts.

official codebase closely with minimal changes and only replaced
the DMTet [2021] geometry extraction stage with FlexiCubes. We
leverage the regularizer term, Ldev, of Equation 8 from the main
paper with a factor 𝜆𝑑𝑒𝑣 = 0.25 in all experiments. The regularizer,
Lsign, (Equation 9, main paper) is already present with DMTet in
nvdiffrec. Additionally, we scale the silhouette mask loss of nvd-
iffrec, with a factor, 𝜆𝑚𝑎𝑠𝑘 = 5.0, to further emphasize geometry.
The combined objective function is:

Ltotal = 𝜆𝑑𝑒𝑣Ldev + Lsign + 𝜆𝑚𝑎𝑠𝑘Lmask . (2)

https://docs.pyvista.org/api/core/_autosummary/pyvista.DataSet.compute_cell_quality.html
https://docs.pyvista.org/api/core/_autosummary/pyvista.DataSet.compute_cell_quality.html
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Fig. 2. Influence of the regularizer Ldev. The reconstructed shape with Ldev
has less visible seams compared to the result without Ldev applied.

We leave the second pass of nvdiffrec (which performs light, ma-
terial, and shape optimization with fixed topology) unmodified.

We show shaded results and mesh illustrations in Figure 4 for the
entire NeRF dataset.

4.2 Mesh Simplification of Animated Objects
We extend our photogrammetry application (from Section 4.1) by
adding support for mesh based, synthetic, datasets with skinned
animations. In practice, we use the skinning provided by Universal
Scene Description (USD) [2016] and source our animated meshes
from RenderPeople [2020]. We achieve mesh simplification by us-
ing a coarse FlexiCubes grid (323) and optimize geometry using
image supervision. In this application, we assume that the skeleton
animation and reference skinning weights are known, and the task
at hand is to learn a simplified mesh, and retarget the animation
using the same skeleton, without manual adjustments.
Mesh simplification using only the T-pose is straightforward

and can be done in nvdiffrec out of the box, with either DMTet
or FlexiCubes for the topology extraction step. In each iteration,
we pick a random viewpoint and optimize the parameters using
photometric loss.We then re-skin the reconstructed, simplifiedmesh
in a post-processing step as follows: for each vertex in the simplified
mesh, we find the k-nearest neighbors (𝑘 = 10) in the reference mesh
and use inverse distance weighting to compute skinning weights
for the simplified vertex. More formally, given a vertex, vlod, in the
simplifiedmesh and the k-nearest neighbors, v𝑖ref , and their skinning
weights,𝑤𝑖

ref , from the reference mesh, the skinning weight,𝑤lod,
for the simplified mesh is computed as:

𝑑

(
v𝑖ref , vlod

)
=

1
max(10−3, ∥v𝑖ref − vlod∥2)

𝑤lod =

∑
𝑖 𝑑

(
v𝑖ref , vlod

)
𝑤𝑖
ref∑

𝑖 𝑑

(
v𝑖ref , vlod

) . (3)

Performing end-to-end mesh simplification over the animation
is more challenging. We first optimize for 300 iterations using the
T-pose, as described above, to get a reasonable initial guess for ge-
ometry. We then enable the animation and optimize for random
viewpoints and random animation frames. For this to work, our

pipeline must support animation of a mesh with changing topology
in a consistent way with gradients propagating back to the topol-
ogy representation. In each iteration we re-skin the FlexiCubes
mesh using a differentiable version of the same k-nearest neighbor
method outlined in Equation 3, and animate the re-skinned mesh us-
ing the differentiable skinning approach of Hasselgren et al. [2021].
Note that, while we do not explicitly optimize skinning weights,
each operation must be differentiable to enable end-to-end training.
An interesting avenue for future work is to also include optimiza-
tion of the skinning weights, but that would require a consistent
parametrization, as vertices can be added or removed during opti-
mization as the topology evolve. This is similar to the texture pa-
rameterization problem in nvdiffrec [2022] work, which is solved
by using 3D texturing (encoded in a MLP) during the topology
optimization phase.

4.3 3D Mesh Generation
In the application of mesh generation, we adopt the recent state-
of-the-art 3D generative model GET3D [Gao et al. 2022], and show
that FlexiCubes as a plug-and-play differentiable mesh extraction
module can produce significantly improved mesh quality.
GET3D [Gao et al. 2022] is a learning-based model trained on

2D images, and can directly synthesize high-quality textured 3D
meshes at inference time. The framework combines classic genera-
tive adversarial networks [Karras et al. 2019, 2020], differentiable
iso-surfacing [Shen et al. 2021] and differentiable rasterization-based
rendering [Laine et al. 2020]. Given a sampled noise vector from
a Gaussian distribution, the generator of GET3D predicts a signed
distance field. Then, a mesh is extracted by DMTet [Shen et al. 2021],
and a differentiable renderer renders one RGB image and one 2D
silhouette, which are fed into 2D discriminators to classify whether
they are real or fake. The differentiable iso-surfacing module enables
the ability to directly generate meshes, and also largely affects the
quality of the produced meshes.
In this application, we replace the DMTet module with Flexi-

Cubes. In particular, we modify the last layer of the 3D generator
in GET3D to output the SDF and deformation for each vertex, and
additionally generate 21 weights for every cube defined in Flex-
iCubes, including the 8 vertex weights, 12 edge weights, and the
remaining 1 parameter for quad splitting. FlexiCubes is adopted
to differentiably extract meshes, and the remaining architecture,
training procedure and other hyperparameters of GET3D are kept
unchanged following the official released implementation7. We fol-
low GET3D and train the 3D generative model on ShapeNet [Chang
et al. 2015] Car, Chair and Motorbike categories using the same
dataset rendering pipeline and train/validation/test split released
by the official implementation. Note that the architecture changes
happen only at the the last layer of the generator while the rest
of the backbone remains the same. Thus, the computational over-
head of the modification is relatively negligible. We include more
qualitative visualization in Figure 5.
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4.4 Physics Simulation
FlexiCubes enables extracting tetrahedral meshes with well-defined
topology, which can be directly utilized in physical simulation. It can
be further combined with differentiable physical simulation frame-
works [Hu et al. 2020; Jatavallabhula et al. 2021] and differentiable
rendering pipelines [Chen et al. 2019; Laine et al. 2020; Munkberg
et al. 2022] to optimize shape, material and physical parameters
from multi-view videos. We have shown two examples in teaser and
Figure 24 in the main paper. In this subsection, we talk about the
details of our physical simulation experiments.

Ground Truth Generation. We first prepare multi-view ground
truth videos with FlexiCubes. Given a surface mesh, we apply Flex-
iCubes to learn the shape with 3D supervision, as well as employing
texture field [Müller et al. 2022; Munkberg et al. 2022] to learn the
texture map from multi-view 2D images (Section 6.1 in the main pa-
per). FlexiCubes supports directly exporting a tetrahedral mesh. We
then send it to the physical simulation framework. Here we adopt a
low-res grid (323 resolution) to extract the tetrahedral mesh such
that the the physical simulation can be more efficient. We choose
to use GradSim [Jatavallabhula et al. 2021], a differentiable physics
simulation framework which has shown both forward simulation
and derivatives w.r.t. the physical parameters in the backward pass.
We focus on FEM simulation and use neo-Hookean elasticity to
model elastic objects during the simulation. During the forward
simulation, we fix the two ending points of an object, letting it drop
and deform under gravity. We choose time step as 1

8192𝑠 and set the
mass density 𝐷 = 0.5, For the Lamé parameters, 𝜆, 𝜇, which control
the element’s resistance to shearing and volumetric strains, we set
𝜇 = 1000, 𝜆 = 1000, and a damping coefficients 𝑑 = 1.5 for the
example in the teaser. For Figure 24 in the main paper, we choose
𝐷 = 0.3, 𝜇 = 1000, 𝜆 = 1000, 𝑑 = 1.5. With the deformed meshes,
we then employ the differentiable rendering pipeline [Laine et al.
2020] to render them into images and composite into videos. We
generate videos with 512 views, where we randomly set circular
camera positions around the object. Note here we do not render
images at all the time steps, but instead instead, we choose video
fps as 64.

Training. Given multi-view video sequences, we then optimize
shape, texture and physical materials from the video input only. As
a challenging task, it is extremely hard to jointly optimize geom-
etry and physical parameters together. In practice, we find FEM
simulation is quite unstable, e.g., joint optimization always has
NaN values and crashed in the training. Therefore, following recent
work [Anonymous 2023] (one anonymous ICLR submission 2023
at the time of our submission), we optimize the shape, texture, and
physical parameters in a two-stage manner.

First, we apply the beginning frame of the video to optimize the
shape and texture only. We assume the object doesn’t deform in
the first frame. Therefore, it is equivalent to a rigid-body mesh
reconstruction (Section 6.1 in the main paper). We use the same
losses but slightly tune the weights (we set 𝜆𝑑𝑒𝑣 = 1.0 and 𝜆𝑚𝑎𝑠𝑘 =

10.0). The first-stage optimization allows us to start from an descent
shape to make the physical parameter optimization easier.

7https://github.com/nv-tlabs/GET3D

In the second stage, we start from the initial guess of the mass
density (we initialize it as 𝐷 = 1.5) and apply GradSim [Jatavallab-
hula et al. 2021] to compute the gradients of the video loss w.r.t. to
the mass density. At each iteration, we send the tetrahedral mesh
to GradSim and execute forward simulation to deform the shape.
Then, we render the deformed shape into images and compare them
with the ground truth images. We use the same loss as in the first
stage and backpropagate it to the mass dentity. We use a different
learning rate schedule here. At the beginning, we use the learning
rate 0.1 and decays it 10 times smaller every 50 iterations). The
whole optimization converges in 200 iterations.

It is worth mentioning that when extracting the tetrahedral mesh,
some tetrahedra can have tiny volume, which could lead to unstable
physical simulation due to numerical issue. Therefore, we conduct a
tetrahedra filtering process after tetrahedral mesh extraction. Specif-
ically, we check the volume of each tetrahedron and remove the one
whose volume is less than a threshold (2𝑒−7 for a shape normalized
in (−0.45, 0.45)). We find this step significantly improves the sta-
bility of the physics simulation, though at the cost of introducing
some slits of the shape, as shown in Figure 6. We hope this can be
further addressed by designing new regularization terms, which we
leave for future work. In Figure 6, we provide more details of the
physics simulation examples in the teaser and Figure24.
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MCSDF DChermite NDCSDF MC DMTet FlexiCubes Reference
Surface extractions from GT SDF Differentiable iso-surfacing

Fig. 3. Visual comparison of a set of iso-surfacing techniques. The three leftmost examples: Marching Cubes (MCSDF), Dual Contouring, Neural Dual
Contouring, use surface extraction from the GT SDF. The next three examples: Marching Cubes, Deep Marching Tetrahedra, and FlexiCubes, use differentiable
iso-surfacing. The grid resolution is 643 for all methods except DMTet, which uses 803 tetrahedral grid to match the triangle count in output meshes.
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Fig. 4. Geometry breakdown for all scenes of the original NeRF dataset. We compare to the original nvdiffrec implementation using DMTet. Note that
FlexiCubes offers more uniform tessellation, while being better capturing small details, as seen in the Lego scene.
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Fig. 5. Qualitative textured mesh generation combining FlexiCubes with GET3D [Gao et al. 2022].
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Fig. 6. Geometry details of the tetrahedral meshes in the physical simulation experiment. FlexiCubes generates tetrahedral meshes with well-defined topology
which can be directly utilized in physical simulation. We further bridge it with differentiable physical simulation and differentiable rendering frameworks to
optimize shape, texture, and physical parameters from multi-view videos. In the two examples, we optimize the mass density 𝐷 of the object and get very close
parameters after converging. We also show the wireframe of the deformed objects. To apply the extracted tetrahedral meshes in physical simulation, we delete
tetrahedrons with tiny volume. This results in some spiky parts of the shape, e.g., the shape has some black slits. We find without deleting small tetrahedrons
leads to unstable simulation results. This problem can be potentially addressed by designing new regularization terms, which we leave for future work.
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