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Fig. 1. We introduce FlexiCubes, a high quality isosurface representation specifically designed for gradient-based mesh optimization with respect to geometric,

visual, or even physical objectives. We present a detailed quality evaluation and demonstrate that FlexiCubes improves the results in a range of applications.

This work considers gradient-based mesh optimization, where we iteratively
optimize for a 3D surface mesh by representing it as the isosurface of a
scalar field, an increasingly common paradigm in applications including
photogrammetry, generative modeling, and inverse physics. Existing im-
plementations adapt classic isosurface extraction algorithms like Marching
Cubes or Dual Contouring; these techniques were designed to extract meshes
from fixed, known fields, and in the optimization setting they lack the de-
grees of freedom to represent high-quality feature-preserving meshes, or
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suffer from numerical instabilities. We introduce FlexiCubes, an isosurface
representation specifically designed for optimizing an unknown mesh with
respect to geometric, visual, or even physical objectives. Our main insight is
to introduce additional carefully-chosen parameters into the representation,
which allow local flexible adjustments to the extracted mesh geometry and
connectivity. These parameters are updated along with the underlying scalar
field via automatic differentiation when optimizing for a downstream task.
We base our extraction scheme on Dual Marching Cubes for improved topo-
logical properties, and present extensions to optionally generate tetrahedral
and hierarchically-adaptive meshes. Extensive experiments validate Flexi-
Cubes on both synthetic benchmarks and real-world applications, showing
that it offers significant improvements in mesh quality and geometric fidelity.

CCS Concepts: • Computing methodologies→Mesh geometry models;
Shape representations; Reconstruction.

Additional Key Words and Phrases: isosurface extraction, gradient-based
mesh optimization, photogrammetry, generative models
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1 INTRODUCTION

Surface meshes serve a ubiquitous role in the representation, trans-
mission, and generation of 3D geometry across fields ranging from
computer graphics to robotics. Among many other benefits, surface
meshes offer concise yet accurate encodings of arbitrary surfaces,
benefit from efficient hardware accelerated rendering, and support
solving equations in physical simulation and geometry processing.

However, not all meshes are created equal—the properties above
are often realized only on a high quality mesh. In fact, meshes which
have an excessive number of elements, suffer from self-intersections
and sliver elements, or poorly capture the underlying geometry,
may be entirely unsuitable for downstream tasks. Generating a
high-quality mesh of a particular shape is therefore very important,
but far from trivial and often requires significant manual effort.

The recent explosion of algorithmic content creation and genera-
tive 3D modeling tools has led to increased demand for automatic
mesh generation. Indeed, the task of producing a high-quality mesh,
traditionally the domain of skilled technical artists and modelers, is
increasingly tackled via automatic algorithmic pipelines. These are
often based on differentiable mesh generation, i.e. parameterizing
a space of 3D surface meshes and enabling their optimization for
various objectives via gradient-based techniques. For example, appli-
cations such as inverse rendering [Hasselgren et al. 2022; Munkberg
et al. 2022], structural optimization [Subedi et al. 2020], and genera-
tive 3D modeling [Gao et al. 2022; Lin et al. 2022] all leverage this
basic building block. In a perfect world, such applications would
simply perform naïve gradient descent with respect to some mesh
representation to optimize their desired objectives. However, many
obstacles have stood in the way of such a workflow, from the basic
question of how to optimize over meshes of varying topology, to the
lack of stability and robustness in existing formulations which lead
to irreparably low-quality mesh outputs. In this work, we propose a
new formulation that brings us closer towards this goal, significantly
improving the ease and quality of differentiable mesh generation in
a variety of downstream tasks.
Directly optimizing the vertex positions of a mesh easily falls

victim to degeneracy and local minima unless very careful initializa-
tion, remeshing, and regularization are used [Liu et al. 2019; Nicolet
et al. 2021; Wang et al. 2018]. As such, a common paradigm is to
define and optimize a scalar field or a signed distance function (SDF)
in space and then extract a triangle mesh approximating the level
set of that function. The choice of scalar function representation
and mesh extraction scheme greatly affects the performance of an
overall optimization pipeline. A subtle but significant challenge of
extracting a mesh from a scalar field is that the space of possible

Table 1. Taxonomy of isosurfacing methods. Grad means gradient-based

based optimization is effective in practice, and Uniformmeans the resulting

tessellations are generally uniform without sliver triangles.

Method Grad. Sharp Features Uniform Intersection-Free 2-Manifold
MC [Lorensen and Cline 1987] ✔ ✖ ✖ ✔ ✖

DC [Ju et al. 2002] ✖ ✔ ✖ ✖ ✖

NDC [Chen et al. 2022b] ✖ ✔ ✔ ✔ ✖

DMC [Nielson 2004] Centroid ✔ ✖ ✔ ✔ ✔

DMC [Schaefer et al. 2007] QEF ✖ ✔ ✔ ✔ ✔

Template Mesh [Liu et al. 2019] ✖ ✖ ✔ ✖ ✔

DMTet [Shen et al. 2021] ✔ ✔ ✖ ✔ ✔

FlexiCubes ✔ ✔ ✔ ✖ ✔

generated meshes may be restricted. As we will show later, the
choice of the specific algorithm used to extract the triangle mesh
directly dictates the properties of the generated shape.
To capture these concerns, we identify two key properties that

a mesh generation procedure should offer to enable easy, efficient,
and high-quality optimization for downstream tasks:

(1) Grad.Differentiationwith respect to themesh is well-defined,
and gradient-based optimization converges effectively in prac-
tice.

(2) Flexible. Mesh vertices can be individually and locally
adjusted to fit surface features and find a high-quality mesh
with a small number of elements.

However, these two properties are inherently in conflict. In-
creased flexibility provides more capacity to represent degener-
ate geometry and self-intersections, which hinder convergence in
gradient-based optimization. As a result, existing techniques [Lorensen
and Cline 1987; Remelli et al. 2020; Shen et al. 2021] usually neglect
one of the two properties (Table 1). For example, the widely-used
Marching Cubes procedure [Lorensen and Cline 1987] is not Flexi-
ble, because the vertices always lie along a fixed lattice and hence
generated meshes can never align with non-axis-aligned sharp fea-
tures (Figure 1). Generalized marching techniques can deform the
underlying grid [Gao et al. 2020; Shen et al. 2021], but still do not al-
low the adjustment of individual vertices, leading to sliver elements
and imperfect fits. On the other hand, Dual Contouring [Ju et al.
2002] is popular for its ability to capture sharp features, but lacks
Grad.; the linear system used to position vertices leads to unstable
and ineffective optimization. Section 2 and Table 1 categorize past
work in detail.

In this work, we present a new technique called FlexiCubes,
which satisfies both desired properties. Our insight is to adapt a par-
ticular Dual Marching Cubes formulation and introduce additional
degrees of freedom to flexibly position each extracted vertex within
its dual cell. We carefully constrain the formulation such that it still
produces manifold and watertight meshes that are intersection-free
in the vast majority of cases, enabling well-behaved differentiation
(Grad.) with respect to the underlying mesh.

The most important property of this formulation is that gradient-
based optimization of meshes succeeds consistently in practice. To
assess this inherently empirical concern, we devote a significant part
of this work to an extensive evaluation of FlexiCubes on several
downstream tasks. Specifically, we demonstrate that our formulation
offers significant benefits for various mesh generation applications,
including inverse rendering, optimizing physical and geometric en-
ergies, and generative 3D modeling. The resulting meshes concisely
capture the desired geometry at low element counts and are easily
optimized via gradient descent. Moreover, we also propose exten-
sions of FlexiCubes such as adaptively adjusting the resolution of
the mesh via hierarchical refinement, and automatically tetrahedral-
izing the interior of the domain. Benchmarks and experiments show
the value of this technique compared to past approaches, which we
believe will serve as a valuable tool for high-quality mesh generation
in many application areas.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.
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2 RELATED WORK

In this section, we first provide a broad outline of related work
before continuing with an in-depth analysis of the most relevant
techniques in Section 3.

2.1 Isosurface Extraction

Traditional isosurfacing methods extract a polygonal mesh repre-
senting the level set of a scalar function, a problem that has been
studied extensively across several fields. Here, we review particu-
larly relevant work and refer the reader to the excellent survey of
DeAraújo et al. [2015] for a thorough overview. FollowingDeAraújo
et al. [2015] we divide isosurfacing methods into three categories
and taxonomize the most commonly used ones in Table 1.

Spatial Decomposition. Methods in the first category obtain the
isosurface through spatial decomposition, which divides the space
into cells like cubes or tetrahedrons and creates polygons within the
cells that contain the surface [Bloomenthal 1988; Bloomenthal et al.
1997]. Marching Cubes (MC) [Lorensen and Cline 1987] is the most
representative method in this category. As originally presented,
Marching Cubes suffers from topological ambiguities and struggles
to represent sharp features. Subsequent work improves the look-up
table which assigns polygon types to cubes [Chernyaev 1995; Hege
et al. 1997; Lewiner et al. 2003; Montani et al. 1994; Nielson 2003;
Scopigno 1994] or divides cubes into tetrahedra [Bloomenthal 1994]
and uses the similar Marching Tetrahedra [Doi and Koide 1991] to
extract the isosurface. To better capture sharp features, Dual Con-
touring (DC) [Ju et al. 2002] moved to a dual representation where
mesh vertices are extracted per-cell, and proposed to estimate vertex
position according to the local isosurface details. Dual Contouring
was extended to adaptive meshing [Azernikov and Fischer 2005]
and can output tetrahedral meshes. Another improved approach is
Dual Marching Cubes (DMC) [Nielson 2004], which leverages the
benefits from both Marching Cubes and Dual Contouring. Recently,
Neural Marching Cubes [Chen and Zhang 2021] and Neural Dual
Contouring (NDC) [Chen et al. 2022b] propose a data-driven ap-
proach to position the extracted mesh as a function of input field.
Despite much progress in extraction from known scalar fields, ap-
plying isosurfacing methods to gradient-based mesh optimization
remains challenging.

Surface Tracking. Methods in the second category utilize surface
tracking and exploit the neighboring information between surface
samples to extract the isosurface. Marching Triangles [Hilton et al.
1996, 1997], one of the first representative methods, iteratively tri-
angulates the surface from an initial point under a Delaunay con-
straint. Following works aim to incorporate adaptivity [Akkouche
and Galin 2001; Karkanis and Stewart 2001] or alignment to sharp
features [McCormick and Fisher 2002]. However, gradient-based
mesh optimization in the framework of surface tracking would re-
quire differentiating through the discrete, iterative update process,
which is a non-trivial endeavor.

Shrink Wrapping. The methods from the third category rely on
shrinking a spherical mesh [Van Overveld and Wyvill 2004], or
inflating critical points [Stander and Hart 1995] to match the iso-
surface. By default, these methods apply only in limited topological

cases and require manual selection of critical points [Bottino et al.
1996] to support arbitrary topology. Moreover, the differentiation
through the shrinking process is also not straightforward and hence
these methods are not well suited for gradient-based optimization.

2.2 Gradient-Based Mesh Optimization in ML

With recent advances in machine learning (ML), several works ex-
plore generating 3D meshes with neural networks, whose parame-
ters are optimized via gradient-based optimization under some loss
function. Early approaches seek to predefine the topology of the gen-
erated shape, such as a sphere [Chen et al. 2019; Hanocka et al. 2020;
Kato et al. 2018;Wang et al. 2018], a union of primitives [Paschalidou
et al. 2021; Tulsiani et al. 2017] or a set of segmented parts [Sung
et al. 2017; Yin et al. 2020; Zhu et al. 2018]. However, they are lim-
ited in their ability to generalize to objects with complex topologies.
To remedy this issue, AtlasNet [Groueix et al. 2018] represents a
3D shape as a collection of parametric surface elements, though it
does not encode a coherent surface. Mesh R-CNN [Gkioxari et al.
2019] first predicts a coarse structure which is then refined to a
surface mesh. Such a two-stage approach can generate meshes with
different topologies, but since the second stage still relies on mesh
deformation, topological errors from the first stage can not be rec-
tified. PolyGen [Nash et al. 2020] autogressively generates mesh
vertices and edges, but they are limited in requiring 3D ground truth
data. CvxNet [Deng et al. 2019] and BSPNet [Chen et al. 2020] seek
to use convex decomposition of the shape or binary planes for space
partitioning, however extending them for various objectives defined
on the meshes is non-trivial.
More recently, many works explore differentiable mesh recon-

struction schemes, which extract an isosurface from an implicit
function, often encoded via convolutional networks or implicit neu-
ral fields. Deep Marching Cubes [Liao et al. 2018] computes the
expectation over possible topologies within a cube, which scales
poorly with increasing grid resolution. MeshSDF [Remelli et al.
2020] proposes a specialized scheme for sampling gradients through
mesh extraction, while Mehta et al. [2022] carefully formulates level
set evolution in the neural context. DefTet [Gao et al. 2020] predicts
a deformable tetrahedral grid to represent 3D objects. Most similar
to our method is DMTet [Shen et al. 2021], which utilizes a differen-
tiable Marching Tetrahedra layer to extract the mesh. An in-depth
analysis of DMTet is provided in Section 3.

3 BACKGROUND AND MOTIVATION

Here, we first discuss common existing isosurface extraction schemes,
to understand their shortcomings and motivate our proposed ap-
proach in Section 4.

Problem Statement. As outlined in Section 1, we seek a representa-
tion for differentiable mesh optimization, where the basic pipeline is
to: i) define a scalar signed-distance function in space, ii) extract its
0-isosurface as a triangle mesh, iii) evaluate objective functions on
that mesh, and iv) back-propagate gradients to the underlying scalar
function. Several popular algorithms in widespread use for isosur-
face extraction still have significant issues in this differentiable set-
ting. The main challenge is that the effectiveness of gradient-based
optimization depends dramatically on the particular mechanism for

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.
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isosurface extraction: restrictive parameterizations, numerically un-
stable expressions, and topological obstructions all lead to failures
and artifacts when used in gradient-based optimization.

We emphasize that our FlexiCubes representation is not intended
for isosurface extraction from fixed, known scalar fields, the primary
case considered in past work. Instead, we particularly consider
differentiable mesh optimization, where the underlying scalar field
is an unknown and extraction is performed many times during
gradient-based optimization. This setting offers new challenges and
motivates a specialized approach.

Notation. All methods we consider extract an isosurface from a
scalar function 𝑠 : R3 → R, sampled at the vertices of a regular grid
and interpolated within each cell. The function 𝑠 may be discretized
directly as values at grid vertices, or evaluated from an underly-
ing neural network, etc., the exact parameterization of 𝑠 makes no
difference for isosurface extraction. For clarity, the set 𝑋 denotes
the vertices of the grid with cells 𝐶 , while𝑀 = (𝑉 , 𝐹 ) denotes the
resulting extracted mesh with vertices 𝑉 and faces 𝐹 . We implicitly
overload 𝑣 ∈ 𝑉 or 𝑥 ∈ 𝑋 to refer to either a logical vertex, or that
vertex’s position in space e.g. 𝑥 ∈ R3.

3.1 Marching Cubes & Tetrahedra

The most direct approach is to extract a mesh with vertices on the
grid lattice, and one or more mesh faces within each grid cell, as
in Marching Cubes [Lorensen and Cline 1987], Marching Tetrahe-
dra [Doi and Koide 1991], and many generalizations. Mesh vertices
are extracted along grid edges where the linearly-interpolated scalar
function changes sign

𝑢𝑒 =
𝑥𝑎 · 𝑠 (𝑥𝑏 ) − 𝑥𝑏 · 𝑠 (𝑥𝑎)

𝑠 (𝑥𝑏 ) − 𝑠 (𝑥𝑎)
. (1)

Liao et al. [2018]; Remelli et al. [2020] observe that this expression
contains a singularity when 𝑠 (𝑣𝑎) = 𝑠 (𝑣𝑏 ), which might obstruct
differential optimization, although Shen et al. [2021] note that Equa-
tion 1 is never evaluated under the singular condition during ex-
traction. The resulting mesh is always self-intersection-free and
manifold.
However, the mesh vertices resulting from marching extraction

can only lie along a sparse lattice of grid edges, by construction. This
prevents the mesh from fitting to sharp features, and unavoidably
creates poor-quality sliver triangles when the isosurface passes
near a vertex. Recent methods propose schemes beyond naive auto-
differentiation to compute improved gradients on the underlying
scalar field [Mehta et al. 2022; Remelli et al. 2020], but this does not
address the restricted output space for the mesh.

A promising remedy is to allow the underlying grid vertices to de-
form [Gao et al. 2020; Shen et al. 2021]. Although this generalization
significantly improves performance, the extracted mesh vertices
are still not able to move independently, leading to star-shaped
skinny triangle artifacts as mesh vertices cluster around a degree of
freedom on the grid. Our method takes inspiration from Shen et al.
[2021] and also leverages grid deformation, but augments the repre-
sentation with additional degrees of freedom to allow independent
repositioning of the vertices, as shown in Figure 4.

+ +

+ -

+ +

+ -

+ +

+ -

Centroid

Original QEF Constrained Biased

+ +

+ -
FlexiCubes

Fig. 2. Grad. Issue in DC. Left:When solving a quadratic error function

(QEF) the resulting vertex is not guaranteed to be inside the cube. This

leads to discrepancies between the geometry and the topological cases. In

addition, there exists a singularity in QEF when the normals are coplanar.

While there exist techniques to improve the stability of DC - constraining

the solution space of QEF or biasing the QEF with regularization loss, they

are not readily adaptable in optimization settings. The former (Second)
zeros out the gradient in certain directions. The latter (Third) is hard to tune
and having a strong regularization will downgrade the advantage of DC in

flexibility. Our version (Fourth), FlexiCubes provides additional degrees
of freedom, such that the dual vertex can be placed anywhere within the

green triangle for this particular configuration.

MC DC DMC

Fig. 3. Comparison between MC, DC and DMC. MC fails to capture

sharp features. DC captures sharp features but can produce non-manifold

vertices in some cases. DMC do not introduce non-manifold vertices, but

has less freedom than DC in representing sharp features.

3.2 Dual Contouring

As the name suggests, Dual Contouring (DC) [Ju et al. 2002] moves
to a dual representation, extracting mesh vertices that can be gen-
erally positioned within grid cells to better capture sharp geometric
features. The position of each mesh vertex is computed by minimiz-
ing a local quadratic error function (QEF) depending on the local
values and spatial gradients of the scalar function 𝑠

𝑣𝑑 = argmin
𝑣𝑑

∑︁
𝑢𝑒 ∈Z𝑒

∇𝑠 (𝑢𝑒 ) · (𝑣𝑑 − 𝑢𝑒 ) . (2)

where 𝑢𝑒 ∈ Z𝑒 are the zero-crossings of the linearly-interpolated
scalar function along the cell edges.

Dual Contouring excels at fitting sharp features when extracting
a single mesh from a fixed scalar function, but several properties
impede its use in differential optimization. Most importantly, Equa-
tion 2 does not guarantee that the extracted vertex lies inside the
grid cell. In fact, co-planar gradient vectors ∇𝑠 (𝑢𝑒 ) create degener-
ate configurations in which the vertex explodes to a distant location,
leading to self-intersections and numerically unstable optimization
when differentiating through the formulation. Explicitly constrain-
ing the vertex to lie in the cell zeros out the gradient, and regulariz-
ing Equation 2 enough to resolve the issue removes the ability to
fit sharp features (Figure 2 & 4). Additionally, the resulting mesh
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Fig. 4. Comparison of different isosurfacing methods for mesh op-
timization. Starting from a sphere initialization, we optimize the shapes

towards the ground truth mesh using a set of isosurfacing methods. DMTet

reconstructs sharp features but produces many sliver triangles. MC [Nielson

2003] fails to capture sharp features, NDC [Chen et al. 2022b] diverges dur-

ing optimization, DC [Ju et al. 2002] converges with strong regularization,

but suffer from artifacts, and FlexiCubes generates a high quality mesh

with details retained. More details about this experiment are provided in

the Supplement.

connectivity may be nonmanifold, and the output mesh contains
non-planar quadrilaterals which introduce error as they are split in
to triangles (Figure 3).
Recent generalizations [Chen et al. 2022b] of Dual Contouring

replace Equation 2 with a learned neural network, improving ex-
traction quality from imperfect but fixed scalar functions. However,
when optimizing with respect to the underlying function, differenti-
ating through an additional neural network further complicates the
optimization landscape and impedes convergence (Figure 4).
Our approach takes inspiration from these methods and the im-

portance of positioning each vertex freely within a cell. However,
rather than explicitly positioning the extracted vertex as a function
solely of a scalar field, we introduce additional carefully-chosen
degrees of freedom which are optimized to locally adjust the vertex
position. We are able to resolve manifoldness by instead basing our
scheme on the similar but lesser-known Dual Marching Cubes.

3.3 Dual Marching Cubes

Much like Dual Contouring, Dual Marching Cubes [Nielson 2004]
extracts vertices positioned within grid cells. However, rather than
extracting a mesh along the dual connectivity of the grid, it extracts

a mesh along the dual connectivity of the mesh that would be ex-
tracted by Marching Cubes. This allows for manifold mesh outputs
for all configurations, by emitting multiple mesh vertices within
a single grid cell when needed. The extracted vertex locations are
defined either as the minimizer of a QEF akin to Dual Contour-
ing [Schaefer et al. 2007], or as a geometric function of the primal
mesh geometry [Nielson 2004], such as the face centroid.
In general, Dual Marching Cubes improves the connectivity of

the extracted mesh vs. Dual Contouring, but if a QEF is used for
vertex positioning, it suffers from many of the same drawbacks as
Dual Contouring. If vertices are positioned at the centroids of the
primal mesh, then the formulation lacks the freedom to fit individual
sharp features. In the subsequent text, whenever we refer to Dual
Marching Cubes we mean the centroid approach, unless otherwise
clarified.
Our approach builds on Dual Marching Cube extraction, but

we introduce additional parameters for positioning vertices which
generalize the centroid approach. Basing our method off a scheme
which can emit correct topology even in difficult configurations is
one key to our success.

4 METHOD

We propose the FlexiCubes representation for differentiable mesh
optimization. The core of the method is a scalar function on a grid,
from which we extract a triangle mesh via Dual Marching Cubes.
Our main contribution is to introduce three additional sets of param-
eters, carefully chosen to add flexibility to the mesh representation
while retaining robustness and ease of optimization:

• Interpolation weights 𝛼 ∈ R8
>0, 𝛽 ∈ R12

>0 per grid cell, to
position dual vertices in space (Section 4.2).

• Splitting weights𝛾 ∈ R>0 per grid cell, to control how quadri-
laterals are split into triangles (Section 4.3).

• Deformation vectors 𝛿 ∈ R3 per vertex of the underlying
grid for spatial alignment, as in Shen et al. [2021] (Section 4.4).

These parameters are optimized along with the scalar function 𝑠

via auto-differentiation to fit a mesh to the desired objective. We
also present extensions of the FlexiCubes representation to ex-
tract a tetrahedral mesh of the volume (Section 4.5) and represent
hierarchical meshes with adaptive resolution (Section 4.6).

4.1 Dual Marching Cubes Mesh Extraction

We begin by extracting the connectivity of the Dual Marching Cubes
mesh based on the value of the scalar function 𝑠 (𝑥) at each grid
vertex 𝑥 , just as in Nielson [2004]; Schaefer et al. [2007]. The signs
of 𝑠 (𝑥) at cube corners determine the connectivity and adjacency
relationships (Figure 7). Unlike ordinary Marching Cubes, which
extracts vertices along grid edges, Dual Marching Cubes extracts
a vertex for each primal face in the cell; typically a single vertex,
but possibly up to four (Figure 7, case C13). Extracted vertices in
adjacent cells are linked by edges to form the dual mesh, composed
of quadrilateral faces (Figure 5). The resulting mesh is guaranteed
to be manifold, although due to the additional degrees of freedom
described below, it may rarely contain self-intersections; see Sec-
tion 7.2.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.
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4.2 Flexible Dual Vertex Positioning

Our method generalizes ordinary Dual Marching Cubes in how the
extracted mesh vertex locations are computed. Recall that Marching
Cubes primal vertices are located at scalar zero-crossings along grid
cell edges

𝑢𝑒 =
𝑥𝑎 · 𝑠 (𝑥𝑏 ) − 𝑥𝑏 · 𝑠 (𝑥𝑎)

𝑠 (𝑥𝑏 ) − 𝑠 (𝑥𝑎)
, (3)

and ordinary Dual Marching Cubes then defines the location of each
extracted vertex to be the centroid of its primal face

𝑣𝑑 =
1

|𝑉𝐸 |
∑︁

𝑢𝑒 ∈𝑉𝐸

𝑢𝑒 , (4)

where 𝑉𝐸 is the set of crossings which are the primal face vertices.
To introduce additional flexibility into this representation, we

first define a set of weights in each grid cell 𝛼 ∈ R8
>0 associating

a positive scalar with each cube corner. These weights adjust the
location of the crossing point 𝑐𝑒 along each edge, and Equation 3
then becomes

𝑢𝑒 =
𝑠 (𝑥𝑖 )𝛼𝑖𝑥 𝑗 − 𝑠 (𝑥 𝑗 )𝛼 𝑗𝑥𝑖
𝑠 (𝑥𝑖 )𝛼𝑖 − 𝑠 (𝑥 𝑗 )𝛼 𝑗

. (5)

In our implementation, we apply a tanh(·) + 1 activation function
to restrict 𝛼 ∈ [0, 2], and do not observe any convergence problems
due to degeneracy.
Likewise, rather than naively positioning the dual vertex at the

centroid of the primal face, we introduce a set of weights in each cell
𝛽 ∈ R12

>0, associating a positive scalar with each cube edge. These
weights adjust the location of the dual vertex inside each face, and
Equation 4 then becomes

𝑣𝑑 =
1∑

𝑢𝑒 ∈𝑉𝐸
𝛽𝑒

∑︁
𝑢𝑒 ∈𝑉𝐸

𝛽𝑒𝑢𝑒 . (6)

In practice, we again apply a tanh(·) + 1 activation to restrict the
range of 𝛽 , similar to 𝛼 .

Together these weights𝛼 ∈ R8
>0,𝛽 ∈ R12

>0 amount to 20 scalars per
grid cell. In both cases, weights are defined independently per cell,
not shared at adjacent corners or edges; independent weights offer
more flexibility, and there is no continuity condition to maintain at
adjacent elements in our dual setting.

Notice that both Equation 5 & 6 are intentionally parameterized
as convex combinations, and thus the resulting extracted vertex
position is necessarily within the convex hull of its grid cell vertices.
Furthermore, when a convex cell emits multiple dual vertices (Fig-
ure 7), the corresponding primal faces in which the dual vertices
are positioned are non-intersecting, which prevents nearly all self-
intersections in the resulting mesh (see Section 7 and Supplement).

4.3 Flexible Quad Splitting

Dual Marching Cubes, and thus also FlexiCubes, extracts pure
quadrilateral meshes with non-planar faces, which are typically
split to triangles for processing in downstream applications. Simply
splitting along an arbitrary diagonal can lead to significant artifacts
in curved regions (Figure 8), and there is in general no single ideal
policy to split non-planar quads to represent unknown geometry.
Our next parameter is introduced to make the choice of split flexible,
and optimize it as a continuous degree of freedom.

Fig. 5. Dual Marching Cubes first interpolate vertex along the edge to

obtain 𝑢𝑒 . The dual vertex 𝑣𝑑 is computed via Equation 4. We connect four

neighboring dual vertices to obtain a quadrilateral.

diortneC
sru

O

GT Surface 

Fig. 6. Formulation of determining the position of dual vertex. The dual

vertex in our formulation can be placed anywhere within the green region.
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C1 C2
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C8 C9

C15 C16

C14

C17

C11

C20 C21

C7

C18

C22

C19

C12 C13

Fig. 7. All configurations for the DualMarching Cubes surface, with rotation

symmetric cases removed. Each colored polygon is a primal face, in which a

single dual vertex is extracted as output. Marked vertices indicate negative

signed distance values, 𝑠 (𝑥 ) < 0, and unmarked vertices indicate positive

values. Figure adapted from Nielson [2004].
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1

3

2

4
1 3 > 2 4

Fig. 8. Left: FlexiCubes generates non-planar quadrangles, which may need

to be triangulated e.g. for rendering. Note that in this example, there is a

clearly favourable triangulation, naturally aligning with the curvature of

the reference surface. Middle: During optimization we use a differentiable

strategy to select triangulation by tessellating each quad into four triangles

with an interpolated midpoint. Right: During inference we tessellate each
quad into two triangles along the dominant diagonal.

DMC Centroid +flex vertex +grid deform +flex quad split

Fig. 9. Ablating the effect of parameters in FlexiCubes. Adding flexible

dual vertex positioning, the mesh edges align much better with the sharp

geometric features, which are further improved with grid deformation. With

flexible quad splitting, FlexiCubes split the quadrangles along the diagonals

that align with the features.

We define a weight 𝛾 ∈ R>0 in each grid cell, which is propagated
to the emitted vertices in the extracted mesh. At optimization-time
only, each quadrilateral mesh face is split into 4 triangles by inserting
a midpoint vertex 𝑣𝑑 (Figure 8). The location of this midpoint is
computed as

𝑣𝑑 =
𝛾𝑐1𝛾𝑐3 (𝑣

𝑐1
𝑑

+ 𝑣
𝑐3
𝑑
)/2 + 𝛾𝑐2𝛾𝑐4 (𝑣

𝑐2
𝑑

+ 𝑣
𝑐4
𝑑
)/2

𝛾𝑐1𝛾𝑐3 + 𝛾𝑐2𝛾𝑐4
(7)

with notation is as in Figure 8. This is a weighted combination of
the midpoints of the two possible diagonals of the face, where the
weights come from the 𝛾 parameters on the corresponding vertices.
Intuitively, adjusting the 𝛾 weights smoothly interpolates between
the geometries resulting from the two possible splits. Optimizing 𝛾
encourages the choice of split which fits the objective of interest.
For final extraction when optimization is complete, we do not insert
the midpoint vertex 𝑣𝑑 , but simply split each quadrilateral along
whichever diagonal has larger product of 𝛾 values.

4.4 Flexible Grid Deformation

Inspired by DefTet [Gao et al. 2020] and DMTet [Shen et al. 2021],
we furthermore allow the vertices of the underlying grid to deform
according to displacements 𝛿 ∈ R3 at each grid vertex. These de-
formations allow the grid to locally align with thin features, and
give additional flexibility in positioning vertices. We limit the defor-
mation to at most half of the grid spacing to ensure that grid cells
never invert.

Fig. 10. We extend FlexiCubes to generate a tetrahedral mesh by dividing

the interior volume illustrated left. Example outputs are shown right.

4.5 Tetrahedral Mesh Extraction

Many applications such as physical simulation and character anima-
tion require a tetrahedralization of the shape volume. We augment
FlexiCubes to additionally output a tetrahedral mesh when desired,
which exactly conforms to the boundary of the extracted surface
and supports automatic differentiation in the same sense as our
surface extraction.

Our approach adapts the strategy proposed by Liang and Zhang
[2014] for Dual Contouring. The vertex set for the tetrahedral mesh
is the union of the grid vertices, our extracted mesh vertices in
cells, and the midpoint of any cell for which no surface vertex was
extracted. We then emit tetrahedra as shown in Figure 10, left. For
each grid edge connecting two grid vertices with the same sign,
four tetrahedra are generated, each formed by the two grid vertices
and two vertices in consecutive adjacent cells. For each grid edge
connecting two grid vertices with different signs, two four-sided
pyramids are generated, each formed by one grid vertex and a vertex
from each adjacent cell. These pyramids are then split at the base
as in Section 4.3 to yield two tetrahedra each. When working with
Dual Marching Cubes connectivity, there is an additional complexity
that a cell may contain multiple extracted mesh vertices, and we
must choose the correct vertex when forming tetrahedra. In most
cases, this choice can be read-off unambiguously from Figure 7;
although rare difficult deformed configurations lead to small mesh
defects–we detail these in the Supplement, and find that they do not
obstruct downstream applications. The resulting meshes are visual-
ized in Figure 10, right, and Figure 24 demonstrates an application
of differentiable physical simulation.

4.6 Adaptive Mesh Resolution

We also augment FlexiCubes to leverage adapative hierarchical
grids, and represent meshes which variably increased spatial resolu-
tion in areas of high geometric detail. The policy of where to refine
the octree grid representation is application-specific, e.g. thresholds
on local curvature in geometric fitting or visual error in inverse
rendering; our representation is responsible for extracting hierar-
chically adaptive meshes while maintaining the key properties of
flexibility and effective gradient-based optimization. Here we again
mimic approaches designed for Dual Contouring [Ju et al. 2002;
Schaefer et al. 2007], adapting them to our FlexiCubes extension of
Dual Marching Cubes.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.
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Cracks Non-manifold Surface

Fig. 11. If the sign of the SDF is inconsistent on the face shared by cubes

at different levels (highlighted in red), it leads to cracks or non-manifold

surfaces. Two such cases are shown here. As such, we restrict the SDF of

these vertices (in orange) to be consistent with the face of the larger cube.

Without Constraint With Constraint

Fig. 12. Cracks and non-manifold vertices produced by running FlexiCubes

with an octree representation can be largely resolved by enforcing the

constraint on SDF of minimal vertices. For the unconstrained version there

are 318 non-manifold vertices in the resulting mesh, and with constraints

there is only a single non-manifold vertex remaining.

The approach is to locally refine our background grid into a hi-
erarchical octree with varying resolution. Most of our algorithm
applies unchanged on an octree, except for the challenge of con-
necting adjacent dual vertices to form quadrilateral meshes faces
when they span different levels of the octree. On a general octree
there may not exist any dual face connectivity which yields a closed
manifold mesh (Figure 11); existing methods mitigate this problem
by constraining the topology of the octree or signs of the implicit
function [Ju et al. 2002; Schaefer et al. 2007]. However, these rules
are not applicable in an optimization setting, where the topology is
unknown and constantly changing. We adopt the approach shown
in Figure 12; refined octree grid vertices adjacent to coarser cells
always take their value as the interpolated value from coarse face
vertices, guaranteeing consistency of signs. This projection yields
nearly watertight adaptive meshes in our experiments. Here again
the combination of all possible configurations from Figure 7 at adja-
cent octree nodes of different hierarchies leaves a small number of
cases where the extracted mesh contains a hole. Nonetheless, the
adaptively refined mesh yields significant improvements, as shown
in Figure 14.

4.7 Regularizers

Our method is a general-purpose tool, which can be optimized ac-
cording to application-specific objectives and regularizers, including
geometric depth and SDF losses, image-space rendering losses, and
mesh-quality regularizers. In the next section, we will detail several
examples utilizing such terms. Here, we first propose two regulariza-
tion terms which are specific to the internals of our representation.

Our over-parameterization of the location of each vertex, de-
scribed in Section 4, is intentional and beneficial, allowing for prop-
erties such as the convex weighting in Section 4.2, and the bounded
grid deformation in Section 4.4, as well as easing stochastic opti-
mization. As such, we introduce two terms to regularize the internal
representation, and encourage non-degenerate parameters which
can easily “flex” to accommodate any local vertex movement. These
regularizers are used for all examples shown in this work.
The first term penalizes the deviation of the distances between

each dual vertex and the edge crossings which compose the face in
which it sits

Ldev :=
∑︁
𝑣∈𝑉

MAD
[
{|𝑣 − 𝑢𝑒 |2 : 𝑢𝑒 ∈ N𝑣}

]
, (8)

where | · |2 is Euclidean distance, MAD denotes the mean absolute
deviationMAD(𝑌 ) = 1

|𝑌 |
∑

𝑦∈𝑌 |𝑦 −mean(𝑌 ) |, and 𝑢𝑒 ∈ N𝑣 are the
edge crossings which bound the primal face for dual vertex 𝑣 . This
term regularizes the extracted connectivity, and encourages vertices
to lie near the center of their cell so they have a margin in which to
flex and adapt.

The second term discourages spurious geometry in regions of the
shapewhich receive no supervision in the application objective, such
as internal cavities. We follow Munkberg et al. [2022] and penalize
sign changes of the implicit function on all grid edges. First, we let
®E𝑔 be the set of all pairs of scalar function values (𝑠𝑎, 𝑠𝑏 ) at grid
vertices (𝑎, 𝑏) connected by an edge and with 𝑠𝑖𝑔𝑛(𝑠𝑎) ≠ 𝑠𝑖𝑔𝑛(𝑠𝑏 ).
Then the loss is given by

Lsign :=
∑︁

(𝑠𝑎,𝑠𝑏 ) ∈ ®E𝑔

𝐻
(
𝜎 (𝑠𝑎), sign(𝑠𝑏 ))

)
, (9)

where 𝐻 , 𝜎 are cross-entropy and sigmoid functions respectively.

5 EXPERIMENTS

In this section, we evaluate FlexiCubes in various mesh optimiza-
tion tasks. First, we analyze the capacity of FlexiCubes in recon-
structing 3D geometry under perfect 3D supervision defined on the
surface and compare with other iso-surfacing techniques in Sec-
tion 5.1. Next, we show that benefiting from differentiably extract-
ing an explicit mesh, FlexiCubes can further optimize for various
mesh-based regularization losses to improve the mesh quality for
downstream applications.

5.1 Mesh Reconstruction

Motivation and Experimental settings. To evaluate the perfor-
mance of optimizing 3D meshes using isosurfacing methods and
avoid the inefficiency that could be introduced by imperfect objec-
tive functions, we experiment in an ideal setting where we define
the objective functions directly on the geometric difference between
the extracted mesh and a ground truth mesh. More specifically, in
each iteration we reconstruct a mesh, render depth and silhouette
images from a randomly sampled camera pose and compute the
differences with a ground truth depth and silhouette images. We
also compute the SDF loss, where we randomly sample 1000 points
and evaluate their SDF values w.r.t the ground truth mesh as well as
the extracted mesh, and minimize the differences between two SDF

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.
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𝑀𝐶𝑆𝐷𝐹 𝐷𝐶ℎ𝑒𝑟𝑚𝑖𝑡𝑒 𝑁𝐷𝐶𝑆𝐷𝐹 MC DMTet FlexiCubes Reference
Surface extractions from GT SDF Differentiable iso-surfacing

Fig. 13. Visual comparison of a set of iso-surfacing techniques. The three leftmost examples: Marching Cubes (𝑀𝐶𝑆𝐷𝐹 ), Dual Contouring, Neural Dual

Contouring, use surface extraction from the ground truth SDF. The next three examples: Marching Cubes, Deep Marching Tetrahedra, and FlexiCubes, use

differentiable iso-surfacing. The grid resolution is 643
for all methods except DMTet, which uses 803

tetrahedral grid to match the triangle count in output

meshes.

values. Please refer to the Supplement for details of the objective
functions and their weighting factors.

Dataset. We use the dataset collected byMyles et al. [2014], which
contains 3D shapes from the AIM@Shape database and popular as-
sets from other community repositories. This shape collection has
a great diversity in geometric features and topology complexities,
ranging from noisy scanned surfaces to highly-detailed CADmodels.
Following Chen and Zhang [2021], we remove the non-watertight
and very skinny (e.g. wires) shapes, which are not suitable for isosur-
facing methods to reconstruct. In total, we use 79 different shapes
in our evaluation.

Baselines. As shown in Figure 13, we compare FlexiCubes with
different methods split into two categories. FlexiCubes is grouped
with the differentiable isosurfacing algorithms, MC and DMTet,
which provides the most direct comparisons. We reconstruct meshes
through optimization with objective functions mentioned above.
Note that the resolution of tetrahedral grid used by DMTet is not
directly comparable with voxel grids used by our method, as the
number of vertices are different under the same resolution. Thus,

we additionally report DMTet at different resolution to match the
triangle counts. The resolution of DMTet is specified in the brackets.
In the other category we group the non-differentiable isosur-

facing methods. To ensure a fair comparison, we use the ground
truth SDF field and extract the mesh using vanilla MC (𝑀𝐶𝑆𝐷𝐹 ),
DC (𝐷𝐶ℎ𝑒𝑟𝑚𝑖𝑡𝑒 ) and NDC (𝑁𝐷𝐶𝑆𝐷𝐹 ). For DC we complement the
ground truth SDF with normal vectors computed using finite dif-
ferences, and for NDC, we use a pretrained model provided by the
authors1.

Evaluation Metrics. We evaluate the reconstructed meshes in
terms of reconstruction accuracy and intrinsic quality of the recon-
structed mesh. For the former, we follow NDC [Chen et al. 2022b]
and compute Chamfer Distance (CD), F-Score (F1), Edge Chamfer
Distance (EDC), Edge F-score (EF1), and the percentage of Inaccu-
rate Normals (IN> 5◦) w.r.t to the ground truth mesh. For the latter,
we compute triangle aspect ratios, radius ratios, and min and max
angles. A detailed description of the evaluation metrics is provided
in the Supplement.

1https://github.com/czq142857/NDC

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.
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Table 2. Quantitative results on Mesh Reconstruction. We report the follow-

ing metrics: IN> 5◦: normal angle difference > 5◦, CD: Chamfer Distance,

F1: F1 score, ECD: Edge Chamfer Distance, EF1: Edge F1 Score. #V: number

of vertices, #F: number of faces.

323 IN>5◦(%)↓ CD(10−5) ↓ F1 ↑ ECD (10−2) ↓ EF1 ↑ #V #T
𝑀𝐶𝑆𝐷𝐹 85.60 22.65 0.28 5.56 0.08 2387 4771
𝐷𝐶ℎ𝑒𝑟𝑚𝑖𝑡𝑒 74.43 17.15 0.38 4.82 0.11 2360 4775
𝑁𝐷𝐶𝑆𝐷𝐹 72.60 17.61 0.42 3.55 0.13 1877 3801
MC 66.61 9.11 0.54 2.60 0.13 2573 5146
DMTet(32) 66.22 11.56 0.52 3.64 0.17 1691 3387
DMTet(40) 61.21 8.35 0.58 3.64 0.20 2626 5259
FlexiCubes 50.52 7.01 0.64 2.11 0.26 2400 4800
643 IN>5◦(%)↓ CD(10−5) ↓ F1 ↑ ECD (10−2) ↓ EF1 ↑ #V #T
𝑀𝐶𝑆𝐷𝐹 80.67 6.84 0.55 2.55 0.14 9881 19783
𝐷𝐶ℎ𝑒𝑟𝑚𝑖𝑡𝑒 63.34 5.90 0.61 3.80 0.23 9828 19769
𝑁𝐷𝐶𝑆𝐷𝐹 55.22 6.16 0.57 1.22 0.26 9828 19769
MC 52.37 6.33 0.66 1.25 0.25 10459 20801
DMTet(64) 50.20 7.50 0.66 3.77 0.28 6783 13566
DMTet(80) 48.66 5.17 0.66 3.59 0.29 10385 20784
FlexiCubes 34.87 4.87 0.70 0.71 0.43 9916 19843
1283 IN>5◦(%)↓ CD(10−5) ↓ F1 ↑ ECD (10−2) ↓ EF1 ↑ #V #T
𝑀𝐶𝑆𝐷𝐹 77.23 4.72 0.68 1.13 0.33 40164 80374
𝐷𝐶ℎ𝑒𝑟𝑚𝑖𝑡𝑒 53.98 4.59 0.69 3.82 0.40 40128 80360
𝑁𝐷𝐶𝑆𝐷𝐹 43.20 5.04 0.65 0.79 0.43 40129 80361
MC 42.56 4.51 0.72 1.32 0.44 38645 77212
DMTet(128) 48.86 4.98 0.74 1.50 0.39 23535 47001
FlexiCubes 30.57 4.31 0.71 0.42 0.51 38923 77845

Uniform 323 Adaptive 643 Adaptive 1283 GT
2.1k tris, CD:4.3 4.5k tris, CD:2.5 7.6k tris, CD: 2.4 10k tris

Uniform 323 Adaptive 643 Adaptive 1283 GT
2.1k tris, CD:5.7 5.7k tris, CD:4.7 22k tris, CD: 4.4 104k tris

Fig. 14. Adaptive meshing with FlexiCubes optimizing mesh topology and

the octree structure jointly. CD denotes Chamfer distance (10−5
).

.

Table 3. Quantitative results on shape reconstruction ablating different

formulations of the dual vertex.

643 IN>5◦(%) ↓ CD(10−5) ↓ F1 ↑ ECD (10−2) ↓ EF1 ↑ #V #T
𝐷𝑀𝐶𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 [Nielson 2004] 53.02 5.85 0.65 2.60 0.19 10240 20488
+ flex vertex (Section 4.2) 40.88 5.34 0.68 0.99 0.37 10022 20055
+ grid deform (Section 4.4) 39.46 5.01 0.69 0.98 0.41 9879 19766
+ flex quad split (Section 4.3) 34.87 4.87 0.70 0.71 0.43 9916 19843

Results. The quantitative results of reconstruction quality are pro-
vided in Table 2 with qualitative examples depicted in Figure 13.
Figure 15 shows the quantitative results of intrinsic mesh quality.

Table 4. Quantitative results on mesh reconstruction with equilateral trian-

gle regularizer. Adding regularizer for DMTet and MC significantly impacts

geometric metrics (IN>5◦(%), CD), while FlexiCubes only sacrifices a bit.

643 IN>5◦(%) ↓ CD(10−5) ↓ Aspect Ratio > 4 (%) ↓ Radius Ratio > 4 (%) ↓ Min Angle < 10 (%) ↓
MC 52.37 6.33 11.71 11.71 11.84
DMTet(80) 48.66 5.17 17.31 16.68 17.83
FlexiCubes 34.87 4.87 2.93 4.49 2.04
MC + Reg. 50.16 8.56 11.46 11.43 11.62
DMTet(80) + Reg. 67.65 6.69 0.29 0.46 0.26
FlexiCubes + Reg. 41.05 5.46 0.39 0.69 0.24

Methods that extract the mesh as a post-processing step fail to
achieve competitive performance in terms of reconstruction quality,
highlighting the importance of end-to-end optimization that miti-
gates the discretization errors introduced in post-processing. When
compared with other methods that use differentiable iso-surfacing
for mesh reconstruction (MC and DMTet), FlexiCubes extracts
meshes that align significantly better with ground truth geometry,
while maintaining superior mesh quality which is on par with the
best performing NDC method.

We further ablate each component we introduced in FlexiCubes,
and provide quantitative results in Table 3 with qualitative examples
in Figure 9. In the Supplement we also include reconstructions of
the same object under different rotations.

5.2 Mesh Optimization with Regularizations

Our FlexiCubes representation is flexible enough that objectives
and regularizers which depend on the extracted mesh itself can be
directly evaluated with automatic differentiation and incorporated
into gradient-based optimization. Some surface-based regularizers
such as surface area may be easily expressed directly as functions
of the underlying scalar field, while others, especially those which
depend on the mesh discretization itself, have no direct equivalent.
This same simple strategy does not succeed with more rigid repre-
sentations like Marching Cubes, because the extracted mesh does
not have the degrees of freedom to adapt to arbitrary objectives. We
provide two examples of mesh regularizations below.

Equilateral Edge Length. In many applications, such as physics
simulation, generating equilateral triangles is preferable over thin
triangles. We penalize the variance of the edge lengths on the ex-
tracted mesh in this regularization. In particular, we compute the
average edge length 𝑒 = 1

| E |
∑
𝑒∈E |𝑒 |2, where E denotes the set of

all the edges in the extracted mesh. The regularization is computed
as: 𝑅edge = 1

|𝑇 |
∑
𝑒∈𝑡,𝑡 ∈𝑇 ( |𝑒 − 𝑒 |2), where 𝑇 is the set of extracted

triangles. We combine this regularization with the reconstruction
loss mentioned in Section 5.1. We first run the optimization to recon-
struct an input mesh without the regularization term for 1000 steps,
then we further run 300 steps using both the reconstruction loss and
the regularization loss, with the regularization weight progressively
increasing from 0 to 100. Adding equilateral triangle regularization
allows FlexiCubes to generate more uniform triangles with a slight
degradation in the reconstruction quality. We compare FlexiCubes
with MC and DMTet, and provide qualitative results in Figure 16.
The quantitative comparison in Table 4 shows that both our method
and DMTet can gain a significant improvement in triangle quality
after adding the regularization, as measured by percentages of tri-
angles having Aspect Ratio > 4, Radius Ratio > 4, or Min Angle < 10.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.
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Fig. 15. Quantitative comparison of the intrinsic quality of extracted meshes. FlexiCubes extracts high-quality meshes with a significantly smaller amount of

sliver triangles (row 3) and more equilateral sides (row 1). The smooth distributions of Min and Max Angle (rows 3 and 4) show that FlexiCubes can adjust the

triangles to better fit the geometry in slightly non-planar regions.

Fig. 16. Adding equilateral edge regularization to enhance triangle quality.

Comparing with results in Figure 13, which does not have equilateral edge

regularization loss, FlexiCubes only has slight degradation of the recon-

struction quality, while MC and DMTet lose details in the local geometry.

Please zoom in to see the mesh details.

However, our method has a significantly smaller drop in geometric
quality, as measured by the first two metrics in Table 4, thanks to
the flexibility of our surface extraction formulation.

Developability. As a more complex mesh-based term, we consider
the developability energy of Stein et al. [2018, Equation 4], which
amounts to penalizing the smallest eigenvalue of the covariance
matrix of face normals about each vertex. Developability is a geo-
metric measure penalizes stretching of the surface relative to a flat
sheet, but does not penalize bending in a single direction; it has
applications to manufacturing from sheets of material like sheet
metal or plywood. Although developability could in-principle be
quantified directly on an implicit function, it has a significant rela-
tionship to discrete mesh connectivity, as discussed by Stein et al.
[2018]. Figure 17 shows the result of incorporating this term into a
synthetic reconstruction problem. Attempting to do the same with
Marching Cubes is much less successful, failing to preserve shape
features and achieve the desired style.

FlexiCubes +0.05

-0.05

Marching
Cubes

Fig. 17. To demonstrate mesh-based regularizers, we combine synthetic

photogrammetry with a developability term [Stein et al. 2018], which en-

courages fabricability from panels. FlexiCubes has the freedom to fit the

shape and satisfy the regularizer, whereas Marching Cubes does not. Top:
Gaussian curvature in radians, Bottom: stylized render to show panelization.

6 APPLICATIONS

6.1 Photogrammetry Through Differentiable Rendering

The differentiable isosurfacing technique DMTet [2021] is at the core
of the recent work, nvdiffrec, which jointly optimizes shape, ma-
terials, and lighting from images [Hasselgren et al. 2022; Munkberg
et al. 2022]. By simply replacing DMTet with FlexiCubes in the
topology optimization step, leaving the remainder of the pipeline un-
modified, we observe improved geometry reconstructions at equal
triangle count, which is illustrated in Figure 20. We also report
nvdiffrec result with DMTet vs. FlexiCubes on the NeRF syn-
thetic dataset [Mildenhall et al. 2020]. View interpolation scores and
Chamfer distances are shown in Table 5. We show additional results
on datasets of real-world photographs in Figure 19. In general, Flex-
iCubes produces fewer sliver triangles as can be observed in the
visual examples (Figure 18) and the min angle histogram. Addition-
ally, the nicer triangulation of FlexiCubes leads to easier creation
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Fig. 18. Visualization of nvdiffrec reconstructions for two scenes in the

NeRF synthetic dataset. We compare DMTet and FlexiCubes for the topol-

ogy extraction step. We note fewer sliver triangles for FlexiCubes. We

illustate this by including min angle histogram for nvdiffrec reconstruc-

tions for all eight scenes in the NeRF synthetic dataset. Fewer triangles with

small angles means less sliver triangles for FlexiCubes.

Table 5. View interpolation results (PSNR) for nvdiffrec reconstructions

of the NeRF synthetic dataset, using either DMTet or FlexiCubes for the

topology step. The image metric scores are arithmetic means over all test

images. We also include Chamfer distances (CD) computed on visible trian-

gles (the set of triangles visible in at least one test view) using 2.5 M point.

Lower scores indicate better geometric fidelity.

PSNR (dB) ↑ Chair Drums Ficus Hotdog Lego Mats Mic Ship

DMTet 31.8 24.6 30.9 33.2 29.0 27.0 30.7 26.0
FlexiCubes 31.8 24.7 30.9 33.4 28.8 26.7 30.8 25.9

CD (10−2) ↓ Chair Drums Ficus Hotdog Lego Mats Mic Ship

DMTet 4.51 3.98 0.30 2.67 2.41 0.41 1.20 55.8
FlexiCubes 0.45 2.27 0.37 1.44 1.60 0.53 1.51 10.5

of unique texture coordinates (UV unwrapping) and improved UV
layouts when running the extracted meshes through an off-the-shelf
unwrapping tool [Young 2021]. Figure 21 illustrates this property.

6.2 Mesh Simplification of Animated Objects

We show the benefit of mesh optimization using the explicit mesh
representation from FlexiCubes in an animated meshing task, illus-
trated in Figure 22. Given a known animated skeleton and images
of the target animated object, we leverage nvdiffrec to extract a
concise mesh which accurately represents the object throughout
the animation. Here, we use an animation sequence from Render-
People [2020].
Rather than fitting a single mesh in a reference pose, Flexi-

Cubes allows us to differentiably skin and deform the mesh via
off-the-shelf skinning tools, and simultaneously optimize with re-
spect to the entire animated sequence. This is in contrast to neural
volumetric [Mildenhall et al. 2020] or implicit surface representa-
tions [Wang et al. 2021], where a geometry deformation system
either needs to be redesigned for the specific neural representation,

e.g., D-NeRF [Pumarola et al. 2020], or where skinning is applied
only after mesh optimization, without end-to-end mesh optimiza-
tion and gradient flow through the deformation.

As a baseline, we use FlexiCubes and optimize using images from
randomized cameras viewing only the mesh in its T-pose. The mesh
is then re-skinned in a post-processing step. To illustrate the benefit
of optimizing over the animation, we combine FlexiCubes with the
differentiable mesh skinning approach of Hasselgren et al. [2021],
re-skin the mesh in each training iteration, and optimize for image
loss using images rendered from randomized cameras and anima-
tion frames. As shown in the bottom part of Figure 22, optimizing
for the appearance over the entire animation helps re-distribute
triangle density to avoid mesh stretching. Note that the differen-
tiable skinning approach from Hasselgren et al. deforms a template
mesh with fixed topology, while the FlexiCubes version presented
here additionally optimizes topology, hence provides a more flexible
approach to mesh simplification of animated assets.

6.3 3D Mesh Generation

Generation of 3D meshes, typically with the goal of facilitating 3D
content creation, is an important task for computer graphics and
vision, and benefits industries such as gaming and social platforms.
Recent 3D generative models [Chan et al. 2022; Gao et al. 2022;
Gu et al. 2022; Schwarz et al. 2022; Zhou et al. 2021] differentiably
render a 3D representation into 2D images, and combine with a
classic generative adversarial framework [Karras et al. 2019, 2020]
to synthesize 3D content using only 2D image supervision. The
recent state-of-the-art GET3D [Gao et al. 2022] directly synthesizes
high-quality textured 3D meshes, enabled by the differentiable iso-
surfacing module DMTet [Shen et al. 2021].
In this application, we demonstrate that FlexiCubes can serve

as a plug-and-play differentiable mesh extraction module in a 3D
generative model, and produce significantly improved mesh quality.
Specifically, we use GET3D [Gao et al. 2022] and replace DMTet
with FlexiCubes in the mesh extraction step. We only modify the
last layer of the 3D generator in GET3D to additionally generate
21 weights for every cube in FlexiCubes. The training procedure,
dataset (we use ShapeNet [Chang et al. 2015]) and other hyperpa-
rameters of GET3D are kept unchanged.

Table 6. Quantitative FID scores for a 3D generative modeling application.

FlexiCubes can be applied as a differentiable mesh extraction module to

GET3D [Gao et al. 2022], producing significantly improved synthesis quality.

Isosurfacing Method Motorbike Chair Car
DMTet [Shen et al. 2021] 48.90 22.41 10.60
FlexiCubes 44.87 17.51 9.55

Qualitative comparisons and quantitative results are provided in
Figure 23 and Table 6, respectively. FlexiCubes achieves better FID
scores across all categories, demonstrating the higher capacity in
generating 3D models. Qualitatively, the shapes generated using the
FlexiCubes version of GET3D are of significantly higher quality,
with more details and fewer sliver triangles.
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Fig. 19. We compare FlexiCubes and DMTet on real world photographic datasets using nvdiffrecmc for the Family dataset from Tanks&Temples [Knapitsch

et al. 2017] and nvdiffrec for the GoldCape dataset [Boss et al. 2021]. FlexiCubes offers more uniform tessellation and more faithfully captures small

geometric details (e.g. the grooves in the GoldCape scene). PSNR view interpolation validation scores are 28.49 / 28.47 dB (DMTet / FlexiCubes) for the Family

scene and 24.44 / 24.56 dB for the GoldCape scene.

Fig. 20. Extracting a 3D model of the Roller scene from LDraw re-

sources [Lasser 2022] using nvdiffrecmc [2022] unmodified (DMTet) and

nvdiffrecmc with FlexiCubes for the topology extraction step. We note

more uniform triangulation and higher detail.

3D Model DMTet FlexiCubes

Fig. 21. Extracting a 3D model of the Porsche scene from LDraw re-

sources [Lasser 2022] using nvdiffrecmc [2022]. We visualize the diffuse

texture, and note that FlexiCubes simplifies the UV unwrapping step (per-

formed using xatlas [2021]). The resulting textures have larger regions,

which improves texture filtering.

6.4 Differentiable Physics Simulation

To leverage FlexiCubes’s ability to differentiably extract tetra-
hedral meshes, we combine it with differentiable physics simu-
lation [Jatavallabhula et al. 2021] and a differentiable rendering
pipeline [Laine et al. 2020] to jointly recover 3D shapes and physical
parameters from multi-view videos. Given a video sequence of an
object deforming, we aim to recover a tetrahedral mesh of the rest
pose as well as material parameters which reproduce the motion
under simulation. In particular, we focus on FEM simulation with
neo-Hookean elasticity to model elastic objects. After extracting the
tetrahedral mesh from FlexiCubes, we feed it into GradSim [Jataval-
labhula et al. 2021] to obtain deformed shapes at different time steps,
these shapes are then differentiably rendered into multi-view im-
ages. We optimize both the 3D geometry and the physical density of
the 3D shape in two-stage manner as in past work. See Figure 24 and
the Supplement for more details. The optimized physical parameters
and 3D geometry with texture are close to the ground truth.

7 DISCUSSION

7.1 Performance

Introducing additional degrees of freedom into the extraction repre-
sentation incurs a moderate increase in runtime and memory usage.
However, in many applications, the cost of mesh extraction is of-
ten small compared to the overall computation, and the ability to
work with more concise extracted meshes may ultimately reduce
the memory requirements of the overall pipeline. Concretely, we
show a performance benchmark of different isosurfacing methods
in Table 7. FlexiCubes is indeed slower and more memory-intensive
than DMTet, and significantly more so than ordinary Marching
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T-pose Frame 47

FlexiCubes (T-pose) FlexiCubes (e2e) Reference
1.7k tris 1.7k tris 23k tris

Fig. 22. Mesh simplification of a skinned animation, showing the benefits

of end-to-end optimization using an explicit, differentiable, mesh represen-

tation. We learn the topology and appearance of a simplified mesh through

image supervision using nvdiffrec. The top row shows the reference mesh

T-pose and an animated frame. The bottom row shows a baseline of Flexi-

Cubes optimized for the T-pose and re-skinned in a post pass, FlexiCubes

with end-to-end optimization, where we re-skin the mesh in each optimiza-

tion step and use a randomized viewpoint and animation frame, and the

reference.
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Fig. 23. Qualitative results for 3D generative modeling with meshes in

GET3D [Gao et al. 2022]. FlexiCubes produces significantly improved mesh

quality with detailed thin structures and more uniform surfaces.

Cubes, but all of these costs are small compared to the downstream
task, which we benchmark in Table 8. The maximum grid resolution
is not constrained by isosurface extraction, but rather by other com-
ponents of the applications, such as rendering or neural network
evaluations. We consistently choose the highest resolution that can
be supported by high-end GPUs for all of our applications.
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Fig. 24. We optimize shape, texture, and physical properties of an object

from multi-view videos by feeding the extracted tetrahedral mesh from

FlexiCubes into differentiable physics simulation [Jatavallabhula et al. 2021]

and differentiable rendering [Laine et al. 2020] pipeline. In the bottom

row (Reference shape), we set the mass density 𝐷 = 0.300 and fix the

two ending points of an object, letting it drop and deform under gravity.

We show the output at three timesteps (three columns). We initialize an

SDF with a sphere geometry and randomly-guessed mass density (𝐷 =

1.500, top row), and optimize in a two-stage manner. In the first stage, we

utilize the beginning frame to optimize the shape and texture. In the second

stage, we extract a tetrahedral mesh (Section 4.5) using FlexiCubes and

apply differentiable physics simulation pipeline to optimize the physical

parameters. The optimized physical parameters (𝐷 = 0.311, middle row) are

close to the ground truth (𝐷 = 0.300, bottom row).

Table 7. Quantitative comparison of the performance of isosurfacing op-

erations. FlexiCubes may significantly increase time and memory costs

compared to simpler extractors, however these costs are still generally small

in the context of downstream applications (see Table 8).

643 Forward Time (ms) Backward Time (ms) Memory (MB)
MC 2.28 0.43 12.05
DMTet 2.33 1.38 22.44
𝐷𝑀𝐶𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 [Nielson 2004] 4.97 1.69 25.08
FlexiCubes 8.93 7.32 116.56
1283 Forward Time (ms) Backward Time (ms) Memory (MB)
MC 5.08 0.58 72.85
DMTet 6.94 1.39 168.27
𝐷𝑀𝐶𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 [Nielson 2004] 7.34 1.74 150.75
FlexiCubes 14.06 9.53 816.17

7.2 Limitations

Self-intersections. Although our approach generally produces high-
quality meshes with improved element shapes in practice, and our
core algorithm guarantees manifoldness, we do not guarantee non-
self-intersecting output. Intersections arise because our flexible dual
representation (Section 4) allows the extracted vertices to move into
intersecting configurations; we found that strictly constraining the
motions to non-intersecting configurations unacceptably worsened
the expressivity and ease of optimization of the method. At a grid
resolution of 643, in our experiment with 79 3D shapes in Table 2,
we observed self intersections on 0.10% of the triangles, and we
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Table 8. Quantitative comparison of the performance of various applica-

tions using two isosurfacing methods: DMTet and FlexiCubes. Note that

nvdiffrecmc stores the per-vertex parameters in memory, whereas GET3D

uses MLPs to predict these parameters. As a result, the introduction of more

parameters leads to a larger increase in memory usage for nvdiffrecmc.

FlexiCubes may even lower the memory requirements of the overall appli-

cation, because fewer triangles are needed to represent the same geometry.

Applications (963) nvdiffrecmc GET3D
Isosurface DMTet FlexiCubes DMTet FlexiCubes
Time per iter. (ms) 307 315 510 610
Memory(GiB) 13.1 15.3 11.6 11.1

note that this is lower than Dual Contouring variants (DC: 1.48%,
NDC: 0.13%). Our optional extensions to tetrahedral and hierarchical
meshing have slightly weaker guarantees, occasionally containing
small cavities or nonmanifold elements in ambiguous cases arising
from the Dual Marching Cubes topology. In our evaluation, we find
that these small imperfections are not detrimental for downstream
applications, but note that additional consideration may be required
if a watertight mesh is imperative for a given application.

Continuity. More fundamentally, although we consider differen-
tiable mesh extraction, our method is actually not even globally
continuous. When the isosurface slips over a grid vertex, the mesh
jumps discontinuously, a property we inherit from Dual Contour-
ing and Dual Marching Cubes. Fortunately, because we apply our
extraction in stochastic optimization settings, such as stochastic gra-
dient descent with Adam, small local discontinuities do not obstruct
optimization in practice. For this reason, we focus on our analy-
sis and experiments on the property of effective optimization in
downstream applications (Figure 4), rather than on formal notions
of differentiability or smoothness.

7.3 Future Work

Looking forward, one opportunity to advance this approach is to
integrate volumetric rendering with mesh-based representations for
improved gradient approximation on visual tasks [Chen et al. 2022a].
Furthermore, 4D spatiotemporal meshing has important applica-
tions in dynamic geometry representation and optimization [Park
et al. 2021]. Very directly, we also hope to integrate adaptive hi-
erarchical mesh extraction (Section 4.6) into generative modeling
applications. More broadly, in our experiments, we have found
FlexiCubes to be a powerful tool for mesh optimization in visual
computing, and we are eager to continue to build on top of it both
in our own work and across the larger community.
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