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In the supplementary material, we first provide details
on our model design choices (Sec. A). Then we describe
the training details (Sec. B). Finally, we provide experiment
details and additional results (Sec. C). Please refer to the
accompanied video for qualitative results on relighting and
virtual object insertion.

A. Model Details
Geometry definition. Our method relies on an explicit sur-
face definition for mesh extraction and efficient ray tracing.
To this end, we follow NeuS [25] and model the geome-
try with a Signed Distance (SD) Field whose zero-level set
defines the scene surface. For volume rendering, the SDF
values fSDF(r(t)) are converted to opacity densities ρ(r(t))
as:

ρ(r(t)) = max(
− dΦκ

dt (fSDF(r(t)))

Φκ(fSDF(r(t)))
, 0) (1)

where Φκ(x) = Sigmoid(κx) = 1
1+e−κx . Intuitively, the

conversion is approximated by placing a unimodal function
around the zero-level set of the SD field, i.e. the derivative of
the sigmoid function Φ

′

κ(x). Here, κ is a learnable parameter
that controls the sharpness of the function and empirically
1/κ converges to zero as the training proceeds [25]. To
extract the mesh, we run marching cubes by querying the
SD field on a predefined grid.

Material definition. We define the material properties of
the scene using the physically-based (PBR) material model
from Disney [5], which is a standard BRDF model adopted
by modern graphics engines such as Unreal Engine [9].

The PBR material model represents the material proper-
ties using a 3-channel base color kd ∈ R3, and 2-channel
specular properties ks ∈ R2. Here, ks includes the rough-
ness and metallic parameters. The metallic parameter is a
real value ∈ [0, 1] indicating whether the surface behaves
as a metal or nonmetal surface (e.g., plastic). Similarly, the
roughness parameter is also a real value ∈ [0, 1] and defines
how rough or smooth the surface is, thereby controlling how
sharp or blurry reflections appear on that surface.

In Fig. 1, 2 and 5 of the main paper, we visualize linear
base color as an RGB image, and follow the graphics con-
vention to visualize the specular properties ks as a packed
RGB image, where metallic is visualized with R-channel
and roughness with G-channel.

Normal extraction. Recent works have proposed differ-
ent ways to extract normal vectors from a neural field. For
example, IRON [29] directly used the gradient of the under-
lying SD field, NeROIC [11] used volume convolution, and
Ref-NeRF [24] introduced an MLP network that predicts a
normal vector at each point to regularize the noisy gradients
of their volume density field.

In our method, we use an MLP fnorm. to predict the nor-
mal direction for any 3D location, and estimate the normal
vectors through volume rendering of the normal field. We
further regularize the predicted normal directions to be con-
sistent with normals computed from the gradient of SD Field.
This design choice allows us to softly enforce the consistency
with the underlying SDF geometry, while still maintaining
the flexibility to account for high-frequency shading details
with an MLP predicted normal (similar to a normal bump
map in mesh-based representation [7]).

Exposure and HDR to LDR conversion. Real-world
cameras often perform automatic white balancing and expo-
sure correction [20] that result in inconsistent supervision
signals across the input images. To alleviate this issue, we
additionally optimize a per-image exposure. Specifically, we
optimize a set of variables {βi}Ni=1, where βi ∈ R3 corre-
sponds to the i−th image exposure compensation. During
optimization, we normalize βi over all the images to resolve
scale ambiguity: βi = β̃i

1
N

∑N
i=1 β̃i

. After that, we multiply
the exposure compensation ratio βi with the predicted RGB
values in the HDR linear RGB space. During inference, we
set all βi to a vector of ones. Note that our lighting intensity
and the rendering output of each pixels are HDR values in
linear RGB space, while the ground truth values of each
pixel in the captured image are in LDR sRGB space. To
convert the predicted HDR RGB values to LDR sRGB, we
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Figure A. Training details for FEGR. Similar to prior optimization-based inverse rendering methods [1, 4, 7], FEGR adopts the major
supervision of image reconstruction loss Lrender and a set of regularization terms for each intrinsic property.

use a standard gamma correction (gamma value equals to
2.2) and intensity clipping [13, 27].

Implementation details. The networks fSDF, fnorm. and
fmat. are 2-layer MLPs with a multi-resolution hash posi-
tional encoding [16], representing SDF, surface normal and
material properties respectively. The dimension of the hid-
den layer is 64. The network fenv. is 4-layer MLP with
frequency positional encoding [15] and exponential activa-
tion, representing HDR environment lighting. The hidden
layer dimension is 256. For each primary ray, we sample 512
uniformly-spaced points and 64 adaptively sampled points
following the scheme of NeuS [25]. We sample 512 sec-
ondary rays via importance sampling over the BRDF and
the HDR environment map. We extract the mesh using
marching cubes [14] with a 512 × 512 × 64 grid, imple-
mented in PyTorch [19] with CUDA support. Adapted from
Nvdiffrecmc [7], the differentiable shading module is imple-
mented in CUDA with OptiX [18]. In the backward pass, we
stop the gradient back-propagation to the extracted triangle
meshes due to the GPU memory constraints. The inference
time for marching cubes mesh extraction is 130ms. After
each mesh update, the time to rebuild the bounding volume
hierarchy (BVH) [18] is 75ms. Note that the mesh extraction
and BVH are only computed once per scene during inference.
The shading pass of one 640x960 image takes 210ms.

B. Training Details

In the following, we provide additional details for each
loss function, as well as an intuitive explanation of their
contribution to the combined optimization. An overview
of our training pipeline is provided in Fig. A. Except for
shading prior loss Lshade, similar loss terms were used before

in the literature. The ablation study provided in Sec. C and
Fig B therefore focuses on the Lshade.

Shading prior Lshade. As is described in the main paper
in Sec. 3.3, the motivation for introducing the semantics-
aware shading regularization term Lshade is to regularize the
lighting. Indeed, Lshade encourages that the shadows present
in the input images are explained by the combination of
lighting and geometry, instead of degenerating into an easy
solution of baking them into albedo.

To this end, we introduce an auxiliary piecewise-constant
albedo representation and encourage its re-rendering to be
consistent with the groundtruth image. Intuitively, due to
the limited capacity of the piecewise-constant albedo repre-
sentation, the supervision signal emerging from the lighting
effects will be mainly propagated to the HDR environment
light. Specifically, we initialize each semantic class with a
3-channel albedo value, which we optimize during training.
Thereby semantic segmentation labels are computed with
an off-the-shelf semantic segmentation network [23]. To
compute the Lshade, we use the estimated lighting to render
this per-semantic class albedo and encourage the rendered
result to be consistent with the groundtruth images.

We depict an example of the per-semantic class albedo in
Fig. A (right). In practice, we apply this loss on the semantic
classes road, sidewalk, building, wall which typically have a
single dominant albedo and provide informative visual cues
such as boundary of cast shadows. We ablate the effect of
this loss in Sec. C and Fig B.

Regularization terms Lreg. denotes the weighted sum of
additional regularization terms: Lsmooth, LEikonal, Lskymask.

We follow prior works [25,28] and regularize the gradient



of SDF value s with an Eikonal term:

LEikonal =
1

|X |
∑
x∈X

(||∇xs(x)||2 − 1)2, (2)

where X is the set of points sampled along the ray.
Similar to prior inverse rendering works [1, 7, 12, 17], we

also encourage local smoothness of normals and material
properties. Specifically, we follow Nvdiffrecmc [7] and ap-
ply the smoothness regularization for base color kd, normal
n, and material ks:

Lsmooth =
1

|X |
∑
x∈X
|kd(x)− kd(x + ε)|

+
1

|X |
∑
x∈X
|ks(x)− ks(x + ε)|

+
1

|X |
∑
x∈X
|n(x)− n(x + ε)|, (3)

where ε ∼ N (0, σ = 0.02) is a local perturbation vector.
Finally, prior works such as NeRF-OSR [21] do not ex-

plicitly handle the sky and hence produce many floaters in
their scene representation. In our work, we follow [26] and
apply a binary cross entropy (BCE) loss Lskymask between
the volume rendered alpha channel and the sky semantic seg-
mentation masks. The sky masks are again obtained from an
off-the-shelf semantic segmentation network [23]. In prac-
tice, we assign a small weight to this sky mask regularization
to only carve out the floaters in the sky region, while not
harming the geometry of the scene.

Training details. The final loss is a weighted sum of the
reconstruction and regularization terms

L =Lrender + λdepthLdepth + λrad.Lrad.

+ λnorm.Lnorm. + λshadeLshade

+ λEikonalLEikonal + λskymaskLskymask

+ λsmoothLsmooth. (4)

where the weight of each loss function is set to: λrad. =
λnorm. = 1, λshade = 0.1, λEikonal = 0.05, λskymask =
λsmooth = 0.01. λdepth is set to 1 on Driving data and 0
for NeRF-OSR dataset [21]. We use Adam optimizer [10]
with a learning rate of 1e-2. As the mesh extraction requires
a well initialized SD field, we run a warm-up phase for 5k
iterations in which we remove Lrender and Lshade. After the
warm-up phase we continue optimizing all the loss terms
for additional 50k iterations. In each batch, we sample 4096
rays. With the parameters detailed above, FEGR consumes
about 20GB GPU memory during training.

C. Experiment Analysis and Results
In this section, we provide a detailed experimental setup

and additional results.

Relighting details. The application of relighting aims to
generate imagery of the 3D scene under the lighting condi-
tions specified by the users, typically an HDR environment
map. FEGR represents the scene with standard PBR mate-
rials, and thus can directly replace the reconstructed HDR
environment light fenv. with the user-specified lighting.

The NeRF-OSR [21] baseline requires spherical harmon-
ics lighting, and thus we converted the HDR map to an SH
representation as suggested in the paper1. In the qualitative
comparison (main paper and the accompanied video), we
tackle a more challenging scenario and use a high-contrast
HDR map with strong directional light to highlight the abil-
ity of the methods to cast shadows. In this case, NeRF-OSR
shows relatively worse qualitative performance, with rea-
sons in twofold: (i) The strong directional sunlight makes
the small normal artifacts more pronounced, and (ii) The SH
coefficients estimated from peaky HDR environment maps
are not on the training data manifold, making the shadow
network fail to generalize. In addition, NeRF-OSR implicitly
represents shadows with an MLP learned across multiple
illumination, and thus cannot guarantee that the shadows
follow the rule of light transport.

Compared to NeRF-OSR, FEGR supports rendering the
physics-based shadow effects from the user-specified light-
ing via ray-tracing, such as shadows due to self-occlusion.
We refer to the accompanied video for qualitative compari-
son and additional results on relighting.

Object insertion details. The application of virtual object
insertion takes as input synthetic objects with know geome-
try and materials, and aims to produce photorealistic imagery
by placing them into real-world images. This requires proper
handling of lighting effects such as cast shadows and spec-
ular highlights. For this image editing task, we follow the
object insertion formulation in [26], which first separately
renders the foreground objects and scene shadows, and then
composite them onto the input scene image. The rendering
is performed in Blender [6].

Existing works on inverse rendering [3,4,7,17,21,29–32]
typically adopt simplified lighting representations such as a
point light [2, 22] or low-frequency spherical lobes [4, 21].
These works do not aim to estimate spatially-varying lighting.
Instead, they only use lighting as a side-product in the joint
optimization process and they discarded it after training.

We compare FEGR on the task of virtual object insertion
with recent state-of-the-art learning-based outdoor lighting
estimation methods [8, 26]. Qualitative comparison is avail-
able in main paper Fig. 6 and a user study in main paper
Table 3. For the user study, we follow the setup of [26]
and conduct it on Amazon Mechanical Turk. Compared to
learning-based feed-forward lighting estimation models, we
acknowledge that our method consumes more information as

1We use this repository to estimate the SH coefficients

https://github.com/chalmersgit/SphericalHarmonics


Training image Ours Ours (w/o Lshade)
Figure B. Qualitative ablation of shading prior. We qualitatively ablate the effect of the semantic-aware shading regularization loss Lshade.
For each scene, we visualize the estimated HDR environment map and an object insertion result. On the bottom-right of the environment
map, we divide the HDR value by 30 to better display the HDR component of the environment map.

Figure C. Qualitative visualization of mesh reconstruction. We visualize the underlying geometry reconstructed by our method.

input and requires online optimization. However, we stress
that our method achieves significantly improved results and
recovers accurate shadow direction and intensity, which is
challenging for single-image feed-forward methods. We be-
lieve that our formulation can inspire future works on the
role of lighting in optimization-based inverse rendering.

We refer to the accompanied video for additional results
on virtual object insertion.

Qualitative ablation of shading prior Lshade. We quali-
tatively ablate and show the results in Fig. B. When training
without the shading prior loss term Lshade, the estimated envi-
ronment light can still predict the peak direction but typically
fails to produce sharp cast shadows and correct shadow scale.
This indicates the shading prior Lshade is beneficial for HDR
light estimation.

Qualitative visualization of meshes. In Fig. C, we visu-
alize the underlying geometry extracted by marching cubes.
In the hybrid rendering described in main paper Sec. 3.2, the
mesh accounts for the visibility query of secondary rays to
render cast shadows.
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