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1 Out-of-Distribution Simulation Experiments

We simulate the case where a patient from one hospital A goes to hospital B, by
running the GAN trained for hospital B on the patient’s ground truth segmen-
tation mask and downsampled CT image. An ideal segmentation network would
perform well on this out-of-distribution sample. We summarize results in Tab. 1,
where we see that our method consistently outperforms or performs similarly
to our baseline methods on dealing with these (simulated) out-of-distribution
inputs, which comes from our disentanglement of the sensor and content (shape
and material), helping segmentation models trained on our simulated data gen-
eralize better. This experiment is in simulation since gaining such data (a patient
with data at two different sites) is a challenge, but we hope to be able to perform
this experiment on real data in the future.

Table 1. Quantitative Results of the Out-Of-Distribution simulation experiment,
where we test performance on simulated data of patient from one hospital going to
another hospital. Method with highest mean is in bold.
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Lower Bound 72.56±2.02 67.52±1.94 84.88±3.31 83.03±3.47 84.41±3.13 86.27±2.79
Ours-Fix-Mat 73.96±3.12 69.79±1.49 87.30±2.65 84.41±2.41 84.14±2.62 86.94±2.75
Ours-Pre 76.58±3.01 71.84±2.21 86.22±2.20 83.65±2.38 81.54±2.01 84.46±3.20
Ours-Full 75.61±1.28 70.55±0.77 84.87±2.92 84.08±3.11 83.13±2.63 85.93±2.17

Upper Bound 76.19±1.64 71.69±1.91 84.01±2.54 82.73±3.23 84.15±1.86 86.39±2.63
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Direct-FL 78.33±3.37 73.05±3.53 85.63±2.13 84.67±2.90 83.86±2.06 87.95±2.16
Ours-Sim-FL 78.07±3.53 74.11±2.77 86.79±1.86 84.70±2.41 84.52±2.94 87.76±2.83

2 Shape Preprocessing Details

Our shape model are obtained from MM-WHS challenge [5] MRI annotation.
We convert the 20 cardiac volume label into mesh using Marching Cube [2]. The
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extracted mesh model contains 4319 vertices and 8610 faces. We then estimate
our SSM model using PCA to obtain the mean shape and the vectors of SSM
weights. The shape class mean and covariance can be written as:

s̃ =
1

M

M∑
i=1

si (1)

C =
1

M − 1

M∑
i=1

(si − s̃)(si − s̃)T (2)

The PCA of the shape produces l eigenvectors Φ = [ϕ1ϕ2...ϕl] and the cor-
responding eigenvalues Λ = diag(λ1, λ2, ..., λl]). Then the new shape can be
approximated from the following linear generative model:

s ≈ s̃+ Φb (3)

where b ∈ R14 are shape parameters. In our experiment, we use the first 14
eigenvectors and we limite the range of b from −1.5

√
λ to 1.5

√
λ.

3 Shape/Material Parameter Generative Model
Implementation Details

In all our experiments, we choose our latent vector z ∈ R32. Our Genera-
tive Model of Shape GθS is parametrized as a three layers Multilayer Percep-
tron(MLP). Each layer is a linear layer followed by an Leaky-ReLU activation
except for the last layer where the activation function is Tanh. The layer weights
are of size 32× 256, 256× 128, and 128× 21. The design of our generative model
of material GθM is based on [4]. It consists of three fully convolutional layers with
{256, 128, 1} number of channels , kernel sizes of {3, 3, 3} with a stride of 1. Sim-
ilar to [4], we add batch normalization and ReLU layers between convolutional
layers, and a Tanh layer at the end. Instead of using Transposed Convolutions
to increase the output spatial dimension, we use Nearest-Neighbour Upsam-
pling before each convolution to avoid checkerboard artifacts [3]. Specifically, we
upsample with a scaling factor 4 to transform input z with spatial dimension
1× 1× 1 (and 32 channels) into 4× 4× 4. Then we use two more upsampling
layers with scaling factor 2 before each convolution layer to get the final output
in R16×16×16.

4 Semi-Supervised Learning Training Details

At the beginning of this phase of training, we fit a multivariate normal distribu-
tion to the latent vectors optimized in the pre-training phase and sample new
random latent vectors zi for the new unlabelled data-points from this distribu-
tion. The intuition is that unlabelled data and labelled data come from the same
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data distribution, thus the latent representation of unlabelled data-point should
come from the same latent distribution. While training, we use two Adam [1]
optimizers with two different learning rate schedules for labelled and unlabelled
data respectively. When training with labelled data (data used in the pre-training
phase), we use a learning rate 1e−4 for zi, GθS and GθM and 1e−5 for GGAN .
For the unlabelled data, we use a learning rate 1e−3 for zi, GθS and GθM and
1e−4 for GGAN . As the unlabelled data was not used in the pre-trained stage,
we use a larger learning rate these data points. These learning rates are used for
the first 30 epochs, and we linearly decay the learning rate of all the models to
0 for the last 30 epochs. Note that we freeze the weights of Discriminator during
the training with the assumption that it can already distinguish fake/real data
well by learning from labelled data, which we found this stabilize the training
process significantly.

5 Federated Learning Setup Details

In our Federated Learning experiment, we setup the gradient communication
between the clients and the server synchronously with a gradient update step 1.
Specifically, we assume each client holds a private dataset (in our case, CT20,
CT34 LC and CT34 MC) and the same model as in the server’s site. At each
training step in the client site, the clients will send back the gradient with respect
to the current model sequentially to the server. In the server site, the server will
do gradient aggregation and update the model parameters once it receives all the
gradient from the clients. After the gradient update, the server will send back
the new model to each of the client. This process continues until a maximum
number of iteration. Implementation wise, this is equivalent to maintain a mini-
batch of each client’s private data and at each training step, the model will do
a forward pass sequentially for each of the mini-batch. And then update the
current model’s parameters using the averaged accumulated gradient from all
the mini-batches. In our experiment, we choose batch size one for each of the
client, which makes the overall effective batch size three since we do one gradient
update step after three forward passes. To compromise it, we also use batch size
three for our method in FL setup. Note that in the FL baseline implementation,
we use validation set from all the clients to select the best model and adjust the
learning rate, which is different from our methods where we use fix number of
iteration to pick the model. This difference might give our FL baseline advantage
since it can learn a more generalized model using average score from all validation
set. Under this setup, our model shows comparable performance comparing to
the baseline. We will further exploit different options and a more realistic FL
implementation for future work.
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Fig. 1. Qualitative Results: First two columns show random samples (full volume) from
our full model on each of the datasets. Last two columns show nearest neighbour from
the training set. We see that our model can generate plausible yet novel data samples
with annotations (second column).
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Fig. 2. Qualitative Results: Three random samples(Full Volume) from our different
methods. Ours-Pre has better image quality and slice consistency comparing to Ours-
Fix-Mat. Ours-Full has more diverse object shape and background comparing to the
other two methods.
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Fig. 3. Qualitative Results: Three samples generated by our method in different
datasets. The first column is the generated shape, the second column is the generated
material, the last column is the generated image. Note how the shape and material are
consistent and correlated.
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