
A Optimal Transport via the Sinkhorn Divergence

In addition to the notations defined in Sec. 3.1, we denote the Dirac delta distribution at x ∈ X as
δx, and the standard n-simplex as Sn.

Recall from Sec. 3.2 that, given a positive cost function c : X × X 7→ R+ and λ ≥ 0, the Entropy
Regularized Wasserstein Distance is defined as:

Wc,λ(µ, ν) = min
π∈Π

∫
c(x,y)dπ(x,y) + λ

∫
log

(
dπ(x,y)

dµ(x)dν(y)

)
dπ(x,y) (7)

where Π =
{
π(x,y) ∈ P(X × X)|

∫
π(x, ·)dx = ν,

∫
π(·,y)dy = µ

}
.

We use the Sinkhorn divergence, as defined in [37].
Definition A.1. (Sinkhorn Loss) The Sinkhorn loss between measures µ and ν is defined as:

Sc,λ(µ, ν) = 2Wc,λ(µ, ν)−Wc,λ(µ, µ)−Wc,λ(ν, ν) (8)

For modeling data-defined distributions, as in our situation, an empirical version can be defined, too.
Note that we use a slightly different notation compared to the main text, because it is more conve-
nient to deal with empirical distributions rather than samples when relating to the dual formulation
later on.
Definition A.2. (Empirical Sinkhorn loss) The empirical Sinkhorn loss computed over a batch of N
generated examples and M real examples is defined as:

Ŝc,λ(µ̂, ν̂) = 2CXY ⊙ P ∗
λ,X,Y − CXX ⊙ P ∗

λ,X,X − CYY ⊙ P ∗
λ,Y,Y (9)

where µ̂ = 1
N

∑N
i=1 δxi , and ν̂ = 1

M

∑M
j=1 δyj . For two samples A ∈ XN and B ∈ XM , CA,B

is the cost matrix between A and B, and P ∗
λ,A,B is an approximate optimal transport plan that

minimizes Eq. 7 computed over A and B.

P ∗
λ is arrived at by iterating the dual potentials: [22] and [37] have shown the following dual formu-

lation for the discritized version of Ŵc,λ:

Ŵc,λ(µ̂, ν̂) = max
f,g∈SN×SM

⟨µ̂, f⟩+ ⟨ν̂, g⟩ − λ⟨µ̂⊗ ν̂, exp(
1

λ
(f ⊕ g − Cµ̂,ν̂))− 1⟩, (10)

where ⊗ denotes the product measure and ⊕ denotes the “outer sum” such that the output is a matrix
of the sums of pairs of elements from each vector. Cµ̂,ν̂ is the cost matrix between each element
of x and y who are distributed according to µ̂ and ν̂, Cij = c(xi,yj). Then, the optimal transport
plan P ∗

λ relates to the dual potentials by P ∗
λ = exp(1λ (f ⊕ g − Cµ̂,ν̂))(µ̂ ⊗ ν̂). Thus, once we find

the optimal f and g, we can obtain P ∗
λ through this primal-dual relationship. We also know the

first-order optimal conditions for f and g through the Karush-Kuhn-Tucker theorem:

fi = −λ log

M∑
j=1

exp(log(ν̂j)+
1

λ
gj−

1

λ
c(xi,yj)) gj = −λ log

N∑
i=1

exp(log(µ̂i)+
1

λ
fi−

1

λ
c(xi,yj))

(11)
To optimize f and g, it suffices to apply the Sinkhorn algorithm [22], see Algorithm 3. Readers can
refer to [59] for further details.

B Differential Privacy

As discussed in Sec. 3.3, differential privacy is the current gold standard for measuring the privacy
risk of data releasing programs. It is defined as follows [5]:
Definition B.1. (Differential Privacy) A randomized mechanism M : D → R with domain D and
range R satisfies (ε, δ)-DP if for any two adjacent inputs d, d′ ∈ D differing by at most one entry,
and for any subset of outputs S ⊆ R it holds that

Pr [M(d) ∈ S] ≤ eεPr [M(d′) ∈ S] + δ. (12)

14

Gradient perturbation: For a parametric function fθ(x) parameterized by θ and loss func-
tion L(fθ(x),y), usual mini-batched first-order optimizers update θ using gradients gt =
1
N

∑N
i=1 ∇θL(fθ(xi),yi). Under gradient perturbation, the gradient gt is first clipped in L2 norm

by constant ∆, and then noise sampled from N (0, σ2I) is added. Since differential privacy is closed
under post-processing—releasing any transformation of the output of an (ε, δ)-DP mechanism is
still (ε, δ)-DP [6]—the parameters θ are also differentially private. The relation between (ε, δ) and
the perturbation parameters ∆ and σ is provided by the following theorem:
Theorem B.1. For c2 > 2 log(1.25/δ), Gaussian mechanism with σ ≥ c∆/ε satisfies (ε, δ) differ-
ential privacy. [6]

Subsampling: In stochastic gradient descent (SGD) and related methods, randomly drawn batches
of data are used in each training step instead of the full dataset. This subsampling of the dataset can
provide amplification of privacy protection since the privacy of any record that is not in the batch
is automatically protected. The ratio of sample size to population size (number of training data)
is the sub-sampling ratio, commonly referred to as q. Smaller q results in less privacy expenditure
per query. Privacy bounds for various subsampling methods have been extensively studied and
applied [5, 39, 40, 41].

Composition: SGD requires the computation of the gradient to be repeated every iteration. The
repeated application of privacy mechanisms on the same dataset is analyzed through composition.
Composition of the Gaussian mechanism has been first analyzed by [23] through the moments ac-
countant method.

We utilize the often used Rényi Differential Privacy [38] (RDP), which is defined through the Rényi
divergence between mechanism outputs on adjacent datasets:
Definition B.2. (Rényi Differential Privacy) A randomized mechanism M : D → R with domain
D and range R satisfies (α, ε)-RDP if for any adjacent d, d′ ∈ D it holds that

Dα(M(d)|M(d′)) ≤ ε, (13)

where Dα is the Rényi divergence of order α. Also, any M that satisfies (α, ε)-RDP also satisfies
(ε+ log 1/δ

α−1 , δ)-DP.

As discussed in the main text, RDP is a well-studied formulation of privacy that allows tight compo-
sition of multiple queries—training iterations in our case—and can be easily converted to standard
definitions of DP with definition B.2. Recall that for sensitivity S and standard deviation of Gaus-
sian noise σ, the Gaussian mechanism satisfies (α, αS2/(2σ2))-RDP [38]. Privacy analysis of a
gradient-based learning algorithm entails accounting for the privacy cost of single queries, which
corresponds to training iterations in our case, possibly with subsampling due to mini-batched train-
ing. The total privacy cost is obtained by summing up the privacy cost across all queries or training
steps, and then choosing the best α.

For completeness, the Rényi divergence is defined as: Dα(P |Q) = 1
α logEx∈Q

[
P (x)
Q(x)

]α
.

B.1 Proof of Theorem 4.1

Recalling definitions from the main text:

G̃ ∈ R(n+n′)×dim(X) such that:{
G̃[i] = G[i] ·min (∆

||G[i]||2
, 1) + γ , i ∈ {0, . . . , n− 1} , γ ∼ N (0,∆2σ2)

G̃[i] = G[i] ·min (∆
||G[i]||2

, 1) , i ∈ {n, . . . , n+ n′ − 1}

Theorem. For clipping constant ∆ and noise vector γ ∼ N (0,∆2σ2), releasing G̃ satisfies
(α, 2αn/σ2)-RDP.

Proof. The proof relies on three simple steps: (i) Deriving the (α, ϵ)-RDP privacy protection for
releasing G̃[i] for i ∈ {0, . . . , n − 1}, following standard methods. (ii) Showing that G̃[n:n+n′]

carries no information about the sensitive data Y. (iii) Showing that the composed gradient G̃ has
privacy protection (α, nϵ)-RDP through composition and post-processing properties.

15

(i) Let Ḡ[i] = G[i] · min (∆
||G[i]||2

, 1). Clearly, max ||Ḡ[i]||2 ≤ ∆. Hence, the sensitivity of

Ḡ[i] is maxY,Y′ ||Ḡ[i](Y) − Ḡ[i](Y′)||2 ≤ 2∆. Therefore, by standard arguments [38], releasing
G̃[i] = Ḡ[i] + γ satisfies (α, 2α/σ2)-RDP.

(ii) Further, note that Y is only involved in calculating Ŵλ(X
[0:n],Y). That

is, Ŵλ(X
[0:n],X[n′:n+n′]) contains no information about Y. We also have that

∇X[n:n+n]′ Ŵλ(X
[0:n],Y) = 0. Therefore, we can show that G[n:n+n′] contains no informa-

tion about Y:

G[n:n+n′] = ∇X[n:n+n]′ (2Ŵλ(X
[0:n],Y)− Ŵλ(X

[0:n],X[n′:n+n′
))

= 2∇X[n:n+n]′ Ŵλ(X
[0:n],Y)−∇X[n:n+n]′ Ŵλ(X

[0:n],X[n′:n+n′])

= 0−∇X[n:n+n]′ Ŵλ(X
[0:n],X[n′:n+n′]),

∇X[n:n+n]′ Ŵλ(X
[0:n],X[n′:n+n′]) is not a function of Y

Consequently, G̃[n:n+n′] = {G[i] ·min (∆
||G[i]||2

, 1)}n+n′−1
i=n does not contain information about Y.

(iii) The composition property of the Gaussian mechanism in RDP [38] states that the n-fold com-
position of (α, ϵ)-RDP queries satisfies (α, nϵ)-RDP. Hence, releasing G̃[0:n] satisfies (α, nϵ)-RDP.
Finally, by the post-processing property of RDP, releasing G̃ = concat(G̃[0:n], G̃[n:n+n′]) enjoys
the same privacy protection as G̃[0:n].

C Algorithms

Algorithm 2 Poisson Sample

Input : d = {(y, l) ∈ X × {0, ..., L}}M ,
sampling ratio q
Output: Y = {(yj , lj) ∈ X×{0, ..., L}}mj=1,
m ≥ 0

s = {σi}Mi=1
i.i.d.∼ Bernoulli(q)

Y = {dj |sj = 1}mj=1

Algorithm 3 Sinkhorn Algorithm
Ŵλ(X,Y)

Input: X = {x}n,Y = {y}m, λ
Output: Wλ

∀(i, j), C[i,j] = c(Xi,Yj)

f ,g← 0⃗
µ̂, ν̂ ← Unif(n),Unif(m)
while not converged do
∀i, fi ← −λ log

∑m
k=1 exp(log(ν̂k) +

1
λ
gk − 1

λ
C[i,k])

∀j,gj ← −λ log
∑n

k=1 exp(log(µ̂k) +
1
λ
fk − 1

λ
C[k,j])

end while
Wλ = ⟨µ̂, f⟩+ ⟨ν̂,g⟩

D Experiment Details

D.1 Datasets

MNIST and Fashion-MNIST both consist of 28x28 grayscale images, partitioned into 60k train-
ing images and 10k test images. The 10 labels of the original classification task correspond to
digit/object class. For calculating FID scores, we repeat the channel dimension 3 times. CelebA is
composed of ∼200k colour images of celebrity faces tagged with 40 binary attributes. We downsam-
ple all images to 32x32, and use all 162,770 training images for training and all 19,962 test images
for evaluation. Generation is conditioned on the gender attribute. We compute FID scores between
our synthetically generated datasets of size 60k and the full test data (either 10k or 19,962 images).
The MNIST dataset is made available under the terms of the Creative Commons Attribution-Share
Alike 3.0 license. The Fashion-MNIST dataset is made available under the terms of the MIT license.
MNIST and Fashion-MNIST do not contain personally identifiable information. The CelebA dataset
is available for non-commercial research purposes only. It contains images of celebrity faces that
are identifiable.

16

D.2 Classifiers

For logistic regression, we use scikit-learn’s implementation, using the L-BFGS solver and capping
the maximum number of iterations at 5000. The MLP and CNN are implemented in PyTorch. The
MLP has one hidden layer with 100 units and a ReLU activation. The CNN has two hidden layers
with 32 and 64 filters, and uses ReLU activations. We train the CNN with dropout (p = 0.5) between
all intermediate layers. Both the MLP and CNN are trained with Adam with default parameters while
using 10% of the training data as hold-out for early stopping. Training stops after no improvement
is seen in hold-out accuracy for 30 consecutive epochs.

0.0 0.2 0.4 0.6 0.8 1.0
p

50

55

60

65

70

75

80

85

90

FI
D

DP-Sinkhorn Performance at different p (MNIST)
FID
Error rate

0.0 0.2 0.4 0.6 0.8 1.0
p

120

130

140

150

160

FI
D

DP-Sinkhorn Performance at different p (Fashion MNIST)

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

Er
ro

r R
at

e
0.28

0.30

0.32

0.34

Er
ro

r R
at

e

Figure 5: Effect of p on DP-Sinkhorn performance. Left: performance on MNIST. Right: perfor-
mance on Fashion MNIST. The performance is reported in terms of image quality (FID) and utility
(error rate).

D.3 Architecture, Hyperparameters, and Implementation

Our DCGAN-based architecture uses 4 transposed convolutional layers with ReLU activations at the
hidden layers and tanh activation at the output layer. A latent dimension of 12 and class embedding
dimension of 4 is used for MNIST and Fashion-MNIST experiments. CelebA experiments use a
latent dimension of 32 and embedding dimension of 4. The latent and class embeddings are con-
catenated and then fed to the convolutional stack. The first transposed convolutional layer projects
the input to 256× 7× 7, with no padding. Layers 2, 3, and 4 have output depth [128, 64, 1], kernel
size [4, 4, 3], stride [2, 2, 1], and padding [1, 1, 1].

Our BigGAN-based architecture uses 4 residual blocks of depth 256, and a latent dimension of
32. Each residual block consists of three convolutional layers with ReLU activations and spectral
normalization between each layer. Please refer to [15] for more implementation details. Our imple-
mentation is based on https://github.com/ajbrock/BigGAN-PyTorch.

For the semi-debiased Sinkhorn loss, we set p = 0.4 for the results reported in Tab. 1 and Tab. 2. For
mixing L1 with L2 loss, we used m = 1 on MNIST and m = 3 on FashionMNIST. Hyperparameter
tuning results are reported in Table 4 and Table 5 and visualized in Figure 5. Setting p = 0.4
provides the best overall performance in terms of error rate and FID for both datasets.

To conditionally generate images given a target class l, we inject class information to both the gen-
erator and the Sinkhorn loss during training. For the loss function, we follow [42] and concatenate
a scaled one-hot class encoding of class label l to both the generated images and real images. Intu-
itively, this works by increasing the cost between image pairs of different classes, hence shifting the
weight of the transport plan (P ∗

λ in Eq. 4) towards class-matched pairs. A scaling constant αc de-
termines the importance of class similarity relative to image similarity in determining the transport
plan. Thus, x and y are replaced by [x, αc∗onehot(lx)] and [y, αc∗onehot(ly)] for class-conditional
generation when calculating the element-wise cost.

Hyperparameters of the Sinkhorn loss used were: αc = 15, and entropy regularization λ = 0.05
in MNIST and Fashion-MNIST experiments. λ = 5 is used for CelebA experiments. We use

17

https://github.com/ajbrock/BigGAN-PyTorch

the implementation publically available at https://www.kernel-operations.io/geomloss/
index.html and all other hyperparameters are kept at their default values. For all experiments, we
use the Adam [50] optimizer. On MNIST, we set the learning rate to 10−4; on Fashion-MNIST
and CelebA, we use learning rate 10−5. Other optimizer hyperparameters were left at the PyTorch
default values of β = (0.9, 0.999), weight decay 2× 10−5.

D.4 Implementation of Differential Privacy

For privacy accounting, we use the implementation of the RDP Accountant available in Tensorflow
Privacy.3 All experiments use Poisson sampling for drawing batches of real data, and are amenable
to the analysis implemented in compute rdp.

For MNIST, we use a noise scale of σ = 1.5 and a batch size of 50 resulting in a sub-sampling
ratio of q = 1/1200, which gives us ∼ 160, 000 training iterations (batches) to reach ε = 10 for
δ = 10−5. For Fashion-MNIST, we use a noise scale of σ = 1.9 and the same batch size. ε = 10
is reached in ∼ 280,000 iterations. For both experiments, we use a clipping norm of 0.5. For the
non-private runs, we use a batch size of 500, which improves image quality and diversity. When
training with DP, increasing batch size significantly increases the privacy cost per iteration, resulting
in poor image quality for fixed ε = 10. For the CelebA results reported in the main text, we use a
noise scale of σ = 1.9 and a batch size of 50 resulting in a sub-sampling ratio of q = 0.00038. At
δ = 10−6, we train for 1.7 million steps to reach ε = 10. The clipping norm is also set to 0.5

Computational Resources We perform experiments on an internal in-house GPU cluster, consist-
ing of V100 NVIDIA GPUs. Each experiment is run on a single GPU with 16GB of VRAM. On
MNIST and FashionMNIST, each epoch of training takes about 50 seconds to complete. Training
of the generators to (10, 10−5)-DP takes 40 GPU hours to complete. On CelebA, experiments with
the DCGAN architecture take ∼75 seconds per epoch during training, which totals to 12 GPU hours
per run. BigGAN experiments take ∼250 seconds per epoch instead, totalling to ∼40 GPU hours
per run.

We estimate the total amount of GPU hours used throughout this project to be ≈10,000 GPU hours.
We assume that an average run takes around 40 GPU hours and each round of hyperparameter tuning
experiments typically consists of 16 runs. From the conceptualization of the project to its current
form, we performed 16 such parameter sweeps following changes to methodology, implementation,
and parameter range. This totals to 10,240 GPU hours.

Table 4: DP-Sinkhorn (ϵ = 10) hyperparameter search on MNIST.

σ δ p m FID Acc (%)

Log Reg MLP CNN

1.1 1.0 0.2 1.0 75 81.2 82.6 79.5
1.3 1.0 0.2 1.0 80 81.9 82.4 80.1
1.3 0.3 0.2 1.0 68.8 79.8 81.2 76.9
1.3 0.7 0.2 1.0 72.0 79.6 81.1 77.0
1.5 0.5 0.2 1.0 74.5 82.3 82.6 82.1
1.5 0.7 0.2 1.0 69.2 80.5 82.2 80.8
1.9 0.5 0.2 1.0 76.4 80.2 80.5 79.2
1.9 0.7 0.2 1.0 70.3 82.2 83.4 80.5
1.5 0.5 0.4 1.0 48.4 82.8 82.7 83.2

We evaluate the impact of architecture choice on the performance in the CelebA task by comparing
DP-Sinkhorn+BigGAN with DP-Sinkhorn+DCGAN, under L2 loss. Results are summarized in
Table 6 and visualized in Figure 6. Qualitatively, despite reaching lower FID score, the DCGAN-
based generator’s images have visible artifacts that are not present in models trained with BigGAN-
generators.

Additional DP-Sinkhorn samples for MNIST and Fashion-MNIST are shown in Figures 7.

3https://github.com/tensorflow/privacy/

18

https://www.kernel-operations.io/geomloss/index.html
https://www.kernel-operations.io/geomloss/index.html
https://github.com/tensorflow/privacy/

Table 5: DP-Sinkhorn (ϵ = 10) hyperparameter search on Fashion MNIST.

σ δ p m FID Acc (%)

Log Reg MLP CNN

1.1 1.0 0.2 1.0 140.0 74.0 74.0 68.0
1.3 0.3 0.2 1.0 156.6 74.1 74.5 65.8
1.3 0.7 0.2 1.0 157.9 74.0 74.2 65.8
1.5 0.5 0.2 1.0 163.4 73.7 74.4 67.5
1.5 0.7 0.2 1.0 161.5 73.9 74.2 69.3
1.9 0.5 0.2 1.0 153.8 73.5 73.9 69.4
1.9 0.7 0.2 1.0 154.7 73.9 73.9 68.4
1.9 0.5 0.4 1.0 133.0 73.2 73.2 69.6
1.9 0.5 0.4 3.0 128.3 75.1 74.6 71.1

Table 6: Differentially private image generation results on downsampled CelebA.

Method DP-ϵ FID Acc (%)

MLP CNN

Real data ∞ 1.1 91.9 95.0

DCGAN+DP-Sinkhorn 10 156.7 74.96 74.62
BigGAN+DP-Sinkhorn 10 168.4 76.18 75.79

Figure 6: Additional DP-Sinkhorn generated images under (10, 10−6)differential privacy. Top two
rows use DCGAN-based generator, while bottom two rows use BigGAN-based generator.

Figure 7: Additional images generated by DP-Sinkhorn, trained on MNIST (left) and Fashion-
MNIST (right).

19

	Optimal Transport via the Sinkhorn Divergence
	Differential Privacy
	Proof of Theorem 4.1

	Algorithms
	Experiment Details
	Datasets
	Classifiers
	Architecture, Hyperparameters, and Implementation
	Implementation of Differential Privacy

