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Abstract

We introduce DMTET, a deep 3D conditional generative model that can synthesize
high-resolution 3D shapes using simple user guides such as coarse voxels. It
marries the merits of implicit and explicit 3D representations by leveraging a novel
hybrid 3D representation. Compared to the current implicit approaches, which are
trained to regress the signed distance values, DMTET directly optimizes for the
reconstructed surface, which enables us to synthesize finer geometric details with
fewer artifacts. Unlike deep 3D generative models that directly generate explicit
representations such as meshes, our model can synthesize shapes with arbitrary
topology. The core of DMTET includes a deformable tetrahedral grid that encodes
a discretized signed distance function and a differentiable marching tetrahedra
layer that converts the implicit signed distance representation to the explicit surface
mesh representation. This combination allows joint optimization of the surface
geometry and topology as well as generation of the hierarchy of subdivisions using
reconstruction and adversarial losses defined explicitly on the surface mesh. Our
approach significantly outperforms existing work on conditional shape synthesis
from coarse voxel inputs, trained on a dataset of complex 3D animal shapes. Project
page: https://nv-tlabs.github.io/DMTet/.

1 Introduction

Fields such as simulation, architecture, gaming, and film rely on high-quality 3D content with rich
geometric details and complex topology. However, creating such content requires tremendous expert
human effort. It takes a significant amount of development time to create each individual 3D asset. In
contrast, creating rough 3D shapes with simple building blocks like voxels has been widely adopted.
For example, Minecraft has been used by hundreds of millions of users for creating 3D content. Most
of them are non-experts. Developing A.I. tools that enable regular people to upscale coarse, voxelized
objects into high resolution, beautiful 3D shapes would bring us one step closer to democratizing
high-quality 3D content creation. Similar tools can be envisioned for turning 3D scans of objects
recorded by modern phones into high-quality forms. Our work aspires to create such capabilities.

A powerful 3D representation is a critical component of a learning-based 3D content creation
framework. A good 3D representation for high-quality reconstruction and synthesis should capture
local geometric details and represent objects with arbitrary topology while also being memory and
computationally efficient for fast inference in interactive applications.

Recently, neural implicit representations [8, 39, 42, 51], which use a neural network to implicitly
represent a shape via a signed distance field (SDF) or an occupancy field (OF), have emerged as
an effective 3D representation. Neural implicits have the benefit of representing complex geometry
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and topology, not limited to a predefined resolution. The success of these methods has been shown
in shape compression [49, 13, 51], single-image shape generation [47, 60, 48], and point cloud
reconstruction [57]. However, most of the current implicit approaches are trained by regressing to
SDF or OF values and cannot utilize an explicit supervision on the target surface, which imposes
useful constraints for training. To mitigate this issue, several works [45, 31] proposed to utilize
iso-surfacing techniques such as the Marching Cubes (MC) algorithm to extract a surface mesh from
the implicit representation, which, however, is computationally expensive.

In this work, we introduce DMTET, a deep 3D conditional generative model for high-resolution
3D shape synthesis from user guides in the form of coarse voxels. In the heart of DMTET is a new
differentiable shape representation that marries implicit and explicit 3D representations. In contrast
to deep implicit approaches optimized for predicting sign distance (or occupancy) values, our model
employs additional supervision on the surface, which empirically renders higher quality shapes with
finer geometric details. Compared to methods that learn to directly generate explicit representations,
such as meshes [54], by committing to a preset topology, our DMTET can produce shapes with
arbitrary topology. Specifically, DMTET predicts the underlying surface parameterized by an implicit
function encoded via a deformable tetrahedral grid. The underlying surface is converted into an
explicit mesh with a Marching Tetrahedra (MT) algorithm, which we show is differentiable and
more performant than the Marching Cubes. DMTET maintains efficiency by learning to adapt the
grid resolution by deforming and selectively subdividing tetrahedra. This has the effect of spending
computation only on the relevant regions in space. We achieve further gains in the overall quality of
the output shape with learned surface subdivision. Our DMTET is end-to-end differentiable, allowing
the network to jointly optimize the geometry and topology of the surface, as well as the hierarchy of
subdivisions using a loss function defined explicitly on the surface mesh.

We demonstrate our DMTET on two challenging tasks: 3D shape synthesis from coarse voxel inputs
and point cloud 3D reconstruction. We outperform existing state-of-the-art methods by a significant
margin while being 10 times faster than alternative implicit representation-based methods at inference
time. In summary, we make the following technical contributions:

1. We show that using Marching Tetrahedra (MT) as a differentiable iso-surfacing layer allows
topological change for the underlying shape represented by a implicit field, in contrast to
the analysis in prior works [31, 45].

2. We incorporate MT in a DL framework and introduce DMTET, a hybrid representation that
combines implicit and explicit surface representations. We demonstrate that the additional
supervision (e.g. chamfer distance, adversarial loss) defined directly on the extracted surface
from implicit field improves the shape synthesis quality.

3. We introduce a coarse-to-fine optimization strategy that scales DMTET to high resolution
during training. We thus achieves better reconstruction quality than state-of-the-art methods
on challenging 3D shape synthesis tasks, while requiring a lower computation cost.

2 Related Work
We review the related work on learning-based 3D synthesis methods based on their 3D representations.

Voxel-based Methods Early work [59, 10, 38] represented 3D shapes as voxels, which store the
coarse occupancy (inside/outside) values on a regular grid, which makes powerful convolutional neural
networks native and renders impressive results on 3D reconstruction and synthesis [12, 11, 58, 2]. For
high-resolution shape synthesis, DECOR-GAN [6] transfers geometric details from a high-resolution
shape represented in voxel to a low-resolution shape by utilizing a discriminator defined on 3D patches
of the voxel grid. However, the computational and memory costs grow cubically as the resolution
increases, prohibiting the reconstruction of fine geometric details and smooth curves. One common
way to address this limitation is building hierarchical structures such as octrees [46, 52, 55, 56, 24, 52],
which adapt the grid resolution locally based on the underlying shape. In this paper, we adopt a
hierarchical deformable tetrahedral grid to utilize the resolution better. Unlike octree-based shape
synthesis, our network learns grid deformation and subdivision jointly to better represent the surface
without relying on explicit supervision from a pre-computed hierarchy.

Deep Implicit Fields (DIFs) represent a 3D shape as a zero level set of a continuous function
parameterized by a neural network [39, 44, 17, 40]. This formulation can represent arbitrary typol-
ogy and has infinite resolution. DIF-based shape synthesis approaches have demonstrated strong
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Figure 1:DMT ET reconstructs the shape implicitly in a coarse-to-�ne manner by predicting the SDF de�ned
on a deformable tetrahedral grid. It then converts the SDF to a surface mesh by a differentiable Marching
Tetrahedra layer.DMT ET is trained by optimizing the objective function de�ned on the �nal surface.

performance in many applications, including single view 3D reconstruction [60, 30, 47, 48], shape
manipulation, and synthesis [26, 21, 28, 14, 1, 9]. However, as these approaches are trained by
minimizing the reconstruction loss of function values at a set of sampled 3D locations (a rough
proxy of the surface), they tend to render artifacts when synthesizing �ne details. Furthermore, if
one desires a mesh to be extracted from a DIF, an expensive iso-surfacing step based on Marching
Cubes [36] or Marching Tetrahedra [15] is required. Due to the computational burden, iso-surfacing
is often done on a smaller resolution, hence prone to quantization errors. Lei et al. [29] proposes an
analytic meshing solution to reduce the error, but is only applicable to DIFs parametrized by MLPs
with ReLU activation. Our representation scales to high resolution and does not require additional
modi�cation to the backward pass for training end-to-end.DMTET can represent arbitrary typology,
and is trained via direct supervision on the generated surface. Recent works [1, 9] learn to regress
unsigned distance to triangle soup or point cloud. However, their iso-surfacing formulation is not
differentiable in contrast to DMTET.

Surface-based Methods directly predict triangular meshes and have achieved impressive results
for reconstructing and synthesizing simpler shapes [54, 23, 5, 41, 7]. Typically, they prede�ned the
topology of the shape, e.g. equivalent to a sphere [54, 5, 25], or a union of primitives [43, 53, 19]
or a set of segmented parts [61, 62, 50]. As a result, they can not model a distribution of shapes
with complex topology variations. Recently, DefTet [18] represents a mesh with a deformable
tetrahedral grid where the grid vertex coordinates and the occupancy values are learned. However,
similar to voxel-based methods, the computational costf increases cubically with the grid resolution.
Furthermore, as the occupancy loss for supervising topology learning and the surface loss for
supervising geometry learning do not support joint training, it tends to generate suboptimal results.
In contrast, our method is able to synthesize high-resolution 3D shapes, not shown in previous work.

3 Deep Marching Tetrahedra

We now introduce ourDMTET for synthesizing high-quality 3D objects. The schematic illustration
is provided in Fig. 1. Our model relies on a new, hybrid 3D representation speci�cally designed for
high-resolution reconstruction and synthesis, which we describe in Sec. 3.1. In Sec. 3.2, we describe
the neural network architecture ofDMTET that predicts the shape representation from inputs such as
coarse voxels. We provide the training objectives in Sec. 3.3.

3.1 3D Representation

We represent a shape using a sign distance �eld (SDF) encoded with a deformable tetrahedral grid,
adopted from DefTet [18, 20]. The grid fully tetrahedralizes a unit cube, where each cell in the
volume is a tetahedron with 4 vertices and faces. The key aspect of this representation is that the grid
vertices can deform to represent the geometry of the shape more ef�ciently. While the original DefTet
encoded occupancy de�ned on each tetrahedron, we here encode signed distance values de�ned on
the vertices of the grid and represent the underlying surface implicitly (Sec. 3.1.1). The use of signed
distance values, instead of occupancy values, provides more �exibility in representing the underlying
surface. For greater representation power while keeping memory and computation manageable, we
further selectively subdivide the tetrahedra around the predicted surface (Sec. 3.1.2). We convert
the signed distance-based implicit representation into a triangular mesh using a marching tetrahedra
layer, which we discuss in Sec. 3.1.3. The �nal mesh is further converted into a parameterized surface
with a differentiable surface subdivision module, described in Sec. 3.1.4.
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3.1.1 Deformable Tetrahedral Mesh as an Approximation of an Implicit Function

We adopt and extend the deformable tetrahedral grid introduced in Gao et al. [18], which we denote
with (VT ; T), whereVT are the vertices in the tetrahedral gridT. Following the notation in [18],
each tetrahedronTk 2 T is represented with four verticesf vak ; vbk ; vck ; vdk g, with k 2 f 1; : : : :; K g,
whereK is the total number of tetrahedra andvi k 2 VT .

We represent the sign distance �eld by interpolating SDF values de�ned on the vertices of the grid.
Speci�cally, we denote the SDF value in vertexvi 2 VT ass(vi ). SDF values for the points that lie
inside the tetrahedron follow a barycentric interpolation of the SDF values of the four vertices that
encapsulates the point.

3.1.2 Volume Subdivision

Figure 2: Volume Subdivision:
Each surface tet.(blue) is divided
into 8 tet.(red) by adding midpoints.

We represent shape in a coarse to �ne manner for ef�ciency. We
determine thesurface tetrahedraTsurf by checking whether a
tetrahedron has vertices with different SDF signs – indicating that
it intersects the surface encoded by the SDF. We subdivideTsurf
as well as their immediate neighbors and increase resolution by
adding the mid point to each edge. We compute SDF values of the
new vertices by averaging the SDF values on the edge (Fig. 2).

3.1.3 Marching Tetrahedra for converting between an
Implicit and Explicit Representation

Figure 3:Three unique surface con�gurations in
MT. Vertex color indicates the sign of signed dis-
tance value. Notice that �ipping the signs of all
vertices will result in the same surface con�gura-
tion. Position of the vertex is linearly interpolated
along the edges with sign change.

We use the Marching Tetrahedra [15] algo-
rithm to convert the encoded SDF into an ex-
plicit triangular mesh. Given the SDF values
f s(va); s(vb); s(vc); s(vd)g of the vertices of a tetra-
hedron, MT determines the surface typology inside
the tetrahedron based on the signs ofs(v), which is
illustrated in Fig. 3. The total number of con�gu-
rations is24 = 16, which falls into 3 unique cases
after considering rotation symmetry. Once the sur-
face typology inside the tetrahedron is identi�ed, the
vertex location of the iso-surface is computed at the
zero crossings of the linear interpolation along the
tetrahedron's edges, as shown in Fig. 3.

Prior works [45, 31] argue that the singularity in this formulation, i.e. whens(va) = s(vb), prevents
the change of surface typology (sign change ofs(va)) during training. However, we �nd that, in
practise, the equation is only evaluated whensign(s(va)) 6= sign(s(vb)) . Thus, during training, the
singularity never happens and the gradient from a loss de�ned on the extracted iso-surface (Sec. 3.3),
can be back-propagated to both vertex positions and SDF values via the chain rule. A more detailed
analysis is in the Appendix.

3.1.4 Surface Subdivision

Having a surface mesh as output allows us to further increase the representation power and the visual
quality of the shapes with a differentiable surface subdivision module. We follow the scheme of the
Loop Subdivision method [35], but instead of using a �xed set of parameters for subdivision, we make
these parameters learnable inDMTET. Speci�cally, learnable parameters include the positions of
each mesh vertexv0

i , as well as� i which controls the generated surface via weighting the smoothness
of neighbouring vertices. Note that different from Liu et al. [33], we only predict the per-vertex
parameter at the beginning and carry it over to subsequent subdivision iterations to attain a lower
computational cost. We provide more details in Appendix.

3.2 DMTET: 3D Deep Conditional Generative Model

Our DMTET is a neural network that utilizes our proposed 3D representation and aims to output a
high resolution 3D meshM from inputx (a point cloud or a coarse voxelized shape). We describe
the architecture (Fig. 4) of the generator for each module of our 3D representation in Sec. 3.2.1, with
the architecture of the discriminator presented in Sec. 3.2.2. Further details are in Appendix.
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Figure 4:Our generator and discriminator architectures. The generator is composed of two parts—one utilizes
MLP to generate the initial predictions for all grid vertices and the other uses GCN to re�ne the surface.

3.2.1 3D Generator
Input Encoder We use PVCNN [34] as an input encoder to extract a 3D feature volumeFvol (x)
from a point cloud. When the input is a coarse voxelized shape, we sample points on its surface. We
compute a feature vectorFvol (v; x) for a grid vertexv 2 R3 via trilinear interpolation.

Initial Prediction of SDF We predict the SDF value for each vertex in the initial deformable
tetrahedral grid using a fully-connected networks(v) = MLP(Fvol (v; x); v). The fully-connected
network additionally outputs a feature vectorf (v), which is used for the surface re�nement in the
volume subdivision stage.

Surface Re�nement with Volume Subdivision After obtaining the initial SDF, we iteratively
re�ne the surface and subdivide the tetrahedral grid. We �rst identify surface tetrahedraTsurf
based on the currents(v) value. We then build a graphG = ( Vsurf ; Esurf ), whereVsurf ; Esurf
correspond to the vertices and edges inTsurf . We then predict the position offsets� vi and SDF
residual values� s(vi ) for each vertexi in Vsurf using a Graph Convolutional Network [32] (GCN):

f 0
v i

= concat(vi ; s(vi ); Fvol (vi ; x); f (vi )) ; (1)

(� vi ; � s(vi ); f (vi )) i =1 ;��� N surf = GCN
�
(f 0

v i
) i =1 ;��� N surf ; G

�
; (2)

whereNsurf is the total number of vertices inVsurf andf (vi ) is the updated per-vertex feature.
The vertex position and the SDF value for vertexvi are updated asv0

i = vi + � vi ands(v0
i ) =

s(vi ) + � s(vi ). This re�nement step can potentially �ip the sign of the SDF values to re�ne the local
typology, and also move the vertices thus improving the local geometry.

After surface re�nement, we perform the volume subdivision step followed by an additional surface
re�nement step. In particular, we re-identifyTsurf and subdivideTsurf and their immediate neigh-
bors. We drop the unsubdivided tetrahedra from the full tetrahedral grid in both steps, which saves
memory and computation, as the size of theTsurf is proportional to the surface area of the object,
and scales up quadratically rather than cubically as the grid resolution increases.

Note that the SDF values and positions of the vertices are inherited from the level before subdivision,
thus, the loss computed at the �nal surface can back-propagate to all vertices from all levels. Therefore,
ourDMTET automatically learns to subdivide the tetrahedra and does not need an additional loss term
in the intermediate steps to supervise the learning of the octree hierarchy as in the prior work [52].

Learnable Surface Subdivision After extracting the surface mesh using MT, we can further apply
learnable surface subdivision. Speci�cally, we build a new graph on the extracted mesh, and use GCN
to predict the updated position of each vertexv0

i , and� i for Loop Subvidision. This step removes
the quantization errors and mitigates the approximation errors from the classic Loop Subdivision by
adjusting� i , which are �xed in the classic method.

3.2.2 3D Discriminator
We apply a 3D discriminatorD on the �nal surface predicted from the generator. We empirically �nd
that using a 3D CNN from DECOR-GAN [6] as the discriminator on the signed distance �eld that
is computed from the predicted mesh is effective to capture the local details. Speci�cally, we �rst
randomly select a high-curvature vertexv from the target mesh and compute the ground truth signed
distance �eldSreal 2 RN � N � N at a voxelized region aroundv. Similarly, we compute the signed
distance �eld of the predicted surface meshM at the same location to obtainSpred 2 RN � N � N .
Note thatSpred is an analytical function of the meshM , and thus the gradient toSpred can back-
propagate to the vertex positions inM . We feedSreal or Spred into the discriminator, along with
the feature vectorFvol (v; x) in positionv. The discriminator then predicts the probability indicating
whether the input comes from the real or generated shapes.
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3.3 Loss Function
DMTET is end-to-end trainable. We supervise all modules to minimize the error de�ned on the
�nal predicted meshM . Our loss function contains three different terms: a surface alignment loss
to encourage the alignment with ground truth surface, an adversarial loss to improve realism of the
generated shape, and regularizations to regularize the behavior of SDF and vertex deformations.

Surface Alignment loss We sample a set of pointsPgt from the surface of the ground truth mesh
M gt . Similarly, we also sample a set of points fromM pred to obtainPpred , and minimize the L2
Chamfer Distance and the normal consistency loss betweenPgt andPpred :

L cd =
X

p2 Ppred

min
q2 Pgt

jjp � qjj2 +
X

q2 Pgt

min
p2 Ppred

jjq � pjj2; L normal =
X

p2 Ppred

(1 � j ~np � ~n q̂j); (3)

whereq̂ is the point that corresponds top when computing the Chamfer Distance, and~np; ~n q̂ denotes
the normal direction at pointp; q̂.

Adversarial Loss We use the adversarial loss proposed in LSGAN [37]:

L D =
1
2

[(D (M gt ) � 1)2 + D(M pred )2]; L G =
1
2

[(D (M pred ) � 1)2]: (4)

Regularizations The above loss functions operate on the extracted surface, thus, only the vertices
that are close to the iso-surface in the tetrahedral grid receive gradients, while the other vertices do
not. Moreover, the surface losses do not provide information about what is inside/outside, since
�ipping the SDF sign of all vertices in a tetrahedron would result in the same surface being extracted
by MT. This may lead to disconnected components during training. To alleviate this issue, we add a
SDF loss to regularize SDF values:

L SDF =
X

v i 2 VT

js(vi ) � SDF (vi ; M gt )j2; (5)

whereSDF (vi ; M gt ) denotes the SDF value of pointvi to the meshM gt . In addition, we apply theL 2
regularization loss on the predicted vertex deformations to avoid artifacts:L def =

P
v i 2 VT

jj � vi jj2.

The �nal loss is a weighted sum of all �ve loss terms:

L = � cdL cd + � normalL normal+ � GL G + � SDFL SDF + � defL def; (6)

where� cd; � normal; � G; � SDF; � def are hyperparameters (provided in the Supplement).

4 Experiments
We �rst evaluateDMTET in the challenging application of generating high-quality animal shapes
from coarse voxels. We further evaluateDMTET in reconstructing 3D shapes from noisy point clouds
on ShapeNet by comparing to existing state-of-the-art methods.

4.1 3D Shape Synthesis from Coarse Voxels
Experimental Settings We collected 1562 animal models from the TurboSquid website1. These
models have a wide range of diversity, ranging from cats, dogs, bears, giraffes, to rhinoceros, goats,
etc. We provide visualizations in Supplement. Among 1562 shapes, we randomly select 1120 shapes
for training, and the remaining 442 shapes for testing. We follow the pipeline in Kaolin [27] to
convert shapes to watertight meshes. To prepare the input to the network, we �rst voxelize the mesh
into the resolution of163, and then sample 3000 points from the surface after applying marching
cubes to the163 voxel grid. Note that this preprocessing is agnostic to the representation of the input
coarse shape, allowing us to evaluate on different resolution voxels, or even meshes.

We compare our model with the of�cial implementation of ConvOnet [44], which achieved SOTA
performance on voxel upsampling. We also compare to DECOR-GAN [6], which obtained impressive
results on transferring styles from a high-resolution voxel shape to a low-resolution voxel. Note that
the original setting of DECOR-GAN is different from ours. For a fair comparison, we use all 1120
training shapes as the high-resolution style shapes during training, and retrieve the closet training
shape to the test shape as the style shape during inference, which we refer as DECOR-Retv. We also
compare against a randomly selected style shape as reference, denoted as DECOR-Rand.

1https://www.turbosquid.com, we obtain consent via an agreement with TurboSquid, and following license at
https://blog.turbosquid.com/turbosquid-3d-model-license/
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Figure 5:Qualitative results on 3D shapes Synthesis from Coarse Voxels. Comparing with all baselines,
our method reconstructs shapes with much higher quality. Adding GAN further improves the realism of the
generated shape. We also show the retrieved shapes from the training set in the second last column.

Metrics We evaluate L2 and L1 Chamfer Distance, as well as normal consistency score to assess
how well the methods reconstruct the corresponding high-resolution shape following [44]. We also
report Light Field Distance [4] (LFD) which measures the visual similarity in 2D rendered views. In
addition, we evaluate Cls score following [6]. Speci�cally, we render the predicted 3D shapes and
train a patch-based image classi�er to distinguish whether images are from the renderings of real or
generated shapes. The mean classi�cation accuracy of the trained classi�er is reported as Cls (lower
is better). More details are in the Supplement.

Figure 6:Qualitative Results of synthesizing high-
resolution shapes from coarse voxels collected online.

Experimental Results We provide quantitative
results in Table 1 with qualitative examples in
Fig. 5. OurDMTET achieves signi�cant improve-
ments over all baselines in terms of all metrics.
Compared to both ConvOnet [44] and DECOR-
GAN [6], our DMTET reconstructs shapes with
better quality when training without adversarial
loss (5th column in Fig. 5). Further geometric de-
tails, including nails, ears, eyes, mouths, etc, are
captured when trained with the adversarial loss
(6th column in Fig. 5), signi�cantly improving the
realism and visual quality of the generated shape.
To demonstrate the generalization ability of our
DMTET, we collect human-created low-resolution voxels from Turbosquid (shapes unseen in train-
ing). We provide qualitative results in Fig. 6. Despite the fact that these human-created shapes have
noticeable differences with our coarse voxels used in training, e.g., different ratios of body parts
compared with our training shapes (larger head, thinner legs, longer necks), our model faithfully
generates high-quality 3D details conditioned on each coarse voxel – an exciting result.
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