Supplementary of Learning to Predict 3D Objects
with an Interpolation-based Differentiable Renderer

Wenzheng Chen'2> Jun Gao?3* Huan Ling!23* Edward J. Smith!4*

Jaakko Lehtinen'® Alec Jacobson? Sanja Fidler!-23

NVIDIA' University of Toronto®> Vector Institute® McGill University* Aalto University’

{wenzchen, huling, jung, esmith, jlehtinen, sfidler}@nvidia.com, jacobson@cs.toronto.edu

1 Derivation of DIB-Render

In this section we show how to back propogate gradients from Yoty
barycentric weights to the vertex positions via differentiable func- f
tions, €2. As shown in Fig. 1, the pixel at position p; is covered by the Wo _
face f; with three vertexes U, U, U, p; and U; are 2D coordinates L wy
. D1 il
on the image plane and w; is corresponding barycentric weights. Prold_ o
We derive €, for wieight wg below, and weights wy and ws can be V\/
calculated similarly. T
With the sum of barycentric weights being equal to 1, we have: Figure 1: Illustration of our Dif-
wo + wy + wy = 1.) ferentiable Rasterization.
We can rewrite it in matrix form as:
—1_ w1
wog=1—[1 1] [w2] 2)
The Barycentric weights are calculated via pixel position ; and face vertex positions ¥y, ¥; and Us:
Pi = wolp + w1¥) + waty, 3)
where we can also rewrite it as:
= - S o Wi _ = =
[0y — T T2 — To] {U’J = [pi —])
Thus we have:
Wi| _ = = - kT R
{wJ =[0h =Ty To—To| [P — Vo] S

If we merge Equation [2]and Equation [5] we can easily derive that:
wo = 1-— [1 1] [171 — 170 172 — 170}71 [ﬁt — 170] (6)

In this way, wg can be treated as a output of a function while the input are pixel coordinate p; and
vertex positions v, v1 and . We rewrite the weight wq as the)y function and thus gradients can be
back propagated from wyq to vertex positions:

wo = Qo (o, U1, U2, P;) @)

*authors contributed equally

> B
(a) (b) ()
(d) (e) ()
Figure 2: Illustration of our rendering pipeline. (a) 3D mesh. (b) Rendered RGB image with
white light in Lambertian model. (c¢) Rendered silhouette image with ¢ as 1.5e-4. (d) Rendered

silhouette with § as 1.5e-3. (e) Rendered silhouette with § as 1.5e-5. (f) Rendered silhouette from
SoftRas-Mesh[[10]

Vextex attribute Vextex Shader | Rasterization | Fragment attribute Fragment Shader
Vertices
Vertex Colors Camera Pixel Colors Color Model
Tex Coords Model Matrix Differentiable- Pixel Tex Coords Texture Model
Vertex Normals View Matrix Rasterizer Pixel Normals Lambertian Model
Light Directions | Projection Matrix Pixel Light Directions | Spherical harmonic Model
Eye Directions Pixel Eye Directions Phong Model

Table 1: Differentiable vertex attributes and rendering models supported by our DIB-Render. With
our method, we can differentiate most common attributes (Column 1 & 4, Vertex attributes and
Fragment attributes) and apply it into multiple rendering models (Column 5, Rendering Models).

2 Rendering Pipeline

In this section we describe our rendering pipeline. Given a 3D mesh (Fig. |2} a), we render it into an
RGBA image, where the RGB image (Fig 2] b, which is rendered with while light) is formed through
our defined interpolation of texture or color information and the silhouette(alpha channel) (Fig. [2} ¢)
is derived from our probabilistic distance function (See Eq. 5 & 6 in the paper).

d(pir, f;) = min [|py — pl|3 ®)
pEf;

Inspired by SoftRas-Mesh [10], our distance function (Eq|[8)) also adopts square distance from the
pixel p;s to the closest point in the face f;. The image coordinate of p;; would be normalized into
[-1, 1] to avoid bias from different image resolutions. There is a hyper-parameter, § (See Eq.5 in the
paper), to control the smoothness of the distance probability, where higher ¢ (Fig. 2] d) makes the
silhouette blurry and lower § (Fig. [2} e) will make the silhouette sharp. With this term we balance the
information back propagated to the faces, and the sharpness of the predicted silhouette. In all of our
experiments we set to 1.5e-4 (Fig. 2] ¢), as a middle ground between the two.

We also compare our defined silhouette definition with that of SoftRas-Mesh[[10] (Fig. [2] f), where
a sigmoid function is used to define their probabilistic distance function. However, the sigmoid
function outputs 0.5 if a pixel lies on the edge of a face, leading many dim lines near face edges, and
so provides a poorer learning signal when comparing to ground truth silhouettes.

3 Supported Mesh Attributes

In Table [I] we highlight the various rendering settings and scene attributes which our rendering
pipeline supports. In Table[2} we compare supported properties in different methods.

Table 2: A compar-

Model Vertex Position | Vertex Color | Texture | Lighting | Analytic Grad. | Text. Coord.

OpenDR [12] 7 7 7 7 ison of different dif-
P:{’;ﬁzi i(’l . v : v v . ferentiable rasterization-
SoftRas-Mesh [10: v v based rendering models.
Smﬁ‘;ﬁ&“’l‘; [l 7 v : ¥ v v'means feature verified
Advgeo [9 v v v v v in the paper while * de-
Ours 4 4 v 4 4 v notes feature supported

in theory.

4 In-Depth Overview of Experiments
In this section, we provide the further details for each experiment in our paper.

4.1 Predicting 3D Objects from Single Images: Geometry and Color

Dataset Details: Following [6}[10L/18]], we use 13 object categories from the ShapeNet dataseﬂ [,
version 1. The training/testing split follows [18]]. The training set contains 35007 objects, and test set
contains 8752 different objects. For each object, we first normalize the object such that the center of
the object is in the origin and all the vertexes lie in range [—0.45, 0.45], we then render each object
using Blende with 24 different camera views. The camera views are equally distributed in a 360
degree ring around each object. The lighting direction in this dataset is set to uniform light. This
results in 840k images for training and 210k images for testing.

Network Structure: We adopt the encoder-decoder framework as in [6,[10]. The encoder contains
3 convolutional layers and 3 linear layers, each convolutional layer has 64/128/256 channels with
kernel size 5 and stride length of 2. The output feature map of the convolutional layers is flatten
to 16384-d vector and fed to the first linear layer. Each linear layer has 1024 neurons. We add
BatchNorm [4] to all the convolutional layers and the first and second linear layers. ReLu [7]
activation function is used after each layer. We have two decoders, one for vertex position, the other
for vertex color. Each decoder has three fully-connected layers, each layer has 1024/2048/1926
neurons, respectively. We directly predict position and color for each vertex. The template sphere has
632 vertexs and 1280 faces. We train every model until converge for around 2 days in V100 GPU.

Loss Function: The IOU loss and color loss has been described in the main paper, here we provide
an explanation of the smoothness and Laplacian losses. We use the same smoothness loss design as
in [6/[10]]. Let E be the set of all edges, and 6; be the angle between two neighboring faces, which
share the edge e;; the smoothness loss is then:

Ly = Z (cos(8;) + 1)2,)

e, €E

which regularizes neighboring faces to have the similar normal directions, encouraging a smoother
predicted mesh. Our Laplacian loss design follows [18]. For each vertex v, let A/(v) be the
neighboring vertices of v, then the Laplacian loss is defined as:

1
Liap = (00 — = > 0w, (10)
NI 57,

where d,, is the predicted movement of vertex v. The Laplacian loss forces neighborhoods to move
consistently [18].

Metrics We measure performance using 3D IOU loss and an F-score. The 3D IOU loss has been
described in the main paper, and we explain the F-score here. We first uniformly sample 2500 points
from the predicted mesh and ground truth mesh. For every predicted point, if the minimum distance
from it to any ground truth point is less than a threshold, we treat it as a true positive, otherwise, it is
false positive. This allows us to compute a precision score, p. For every ground truth point, if the
minimum distance from it to every predicted point is less then a threshold, we treat this as a true
positive, otherwise, it is a false negative, and so we can compute a recall score r. The F-score is then
computed via: 2 % (p*7)/(p + r). We set the threshold to 0.02 in our experiments.

2www.shapenet.org

3https://www.blender.org/

Figure 3: Qualitative comparison of texture and lighting with N3MR [6]. Purple rectangle: Input image.
First Row: Ground Truth. Second Row: Prediction with DIB-Render. Third Row: Prediction of N3MR. First
column: Texture and Light. Second column: Texture. Third column: Light

4.2 Predicting 3D Objects from Single Images: Geometry, Texture and Lighting

Dataset Details To learn diverse texture maps, we select to learn with the car category due to its
large diversity of texture. In the experiments where we compare with N3MR, we choose Lambertian
reflectance model as our rendering model since N3MR only supports such one lighting model. Instead
of Blender, We choose to use OpenG]_E] to render data since we could easily turn on or turn off light
effect in OpenGL shaders to separate the texture and light. We render car models into images both
with and without light effect in Lambertian model and randomly sample the lighting direction over a
quarter sphere where we constrain the light illuminates the upper part of the objects.

Similarly, for the experiment with adversarial Loss, since we adopting Phong and Spherical Harmonic
lighting models in our learning framework, we use OpenGL render to render images with Phong and
Spherical Harmonic lighting models respectively and train the neural network with the corresponding
dataset.

Network Structure We adopt a UNet [16]] model for texture prediction, the network architecture
is similar to [S], except we add Batch Normalization to every convolutional layer and we use skip
connections. We also replace all ReLu layers in UNet [[16] to be Leaky Relu [20]. We exploit a
shallow fully connected encoder for lighting parameters prediction. The encoder contains 1 linear
input layer and 2 1D-residual linear layers [3] and 1 linear output layer. Output image feature for first
three linear layers contains 1024/1024/1024 channels. For Phong model, the final linear layer outputs
4 lighting parameters where we try to learn the light direction together with the material shininess

*https://www.opengl.org/

Figure 4: Qualitative comparison of texture and lighting for model trained with and without adversarial loss.
Purple rectangle: Input image. First Row: Ground Truth. Second Row: Prediction with adversarial loss.
Third Row: Prediction without adversarial loss. First column: Texture and Light. Second column: Texture.
Third column: Light. Forth to Ninth column: Texture from different views.

constant. For Spherical Harmonic model, the final linear layer outputs 9 coefficients of Spherical
Harmonic basis.

For experiments with adversarial loss, we inherit basic discriminator architecture from DC-GAN [[15]].
We use Instance normalization [17]], and Leaky-ReLU [13].

4.3 Real Images

Dataset Details & Network Structure We adopt the same dataset and network structure with
CMR [5] but change the differentiable renderer from N3MR [6]] to our method. For more details
please refer to CMR [J3]].

44 3D GAN

Dataset Details We use the car class from the ShapeNet dataset for this task[1l]. We render each
car from 4 primary viewpoints: front, back, left and right. In addition to these images we learn a
dataset of car textures using our texture and lighting prediction model. For each car object we pass
one rendered view through our learned texture predictor and save the result as an example ’ground
truth’ texture.

Network Structure Four networks are used in this application: a shape generator GG1, a texture
generator, G2, a rendered image discriminator, D1, and a texture discriminator, Dy. G expects a
vector of random noise of length 128, and passes it through a series of 8 fully connected layers with
ReLU activations [14], and batch normalization [4]] to steadily increase its dimension to 1926 (3 x
time number of vertices). It is then reshaped for output as the predicted positions for each vertex.
In addition, activations from its fifth layer are outputted as conditioning information for the texture
prediction. This information is concatenated with a second vector of random noise, also of size
128, and passed to the Texture Generator G2. The texture predictor is comprised of 7 convolutional
layers, again with ReLU activations and batch normalization, to output a texture map with 256 by
256 resolution. The image discriminator, D1, takes as input a 64 by 64 resolution image, rendered
from our generated mesh. Its architecture is composed of 4 convolutional layers with leaky-ReL.U

activations [13]], and instance normalization [17], followed by a single fully connected layer to output
a vector of length 32. An identical architecture is leveraged for Ds, except the first layer is modified
to accept the larger texture resolution of 256 by 256.

5 More Results

5.1 Single Image 3D Reconstruction

We provide more results on more different categories and compare with Softras-Mesh [[10] and
N3MR [6] in Figure[6] We further provide more results from different view angles on Figure
demonstrating the high fidelity mesh our model could predict.

5.2 Predicting 3D Objects from Single Images: Geometry, Texture and Light

We first show qualitative comparison with N3MR[6] in Fig.[3] then we show qualitative comparison
for model trained with and without adversarial loss in Figldl We show more qualitative results with
adversarial loss in Fig.[5] We further show more separation study cases in Fig. [8]and Fig. [0}

5.3 Real Images

In Figure@]we show more examples of the learned shape and texture from CUB bird dataset [[19].
Our method successfully learns the hard shapes such as beaks, legs and wings together with realistic
textures.

5.4 3D GAN

In Figure [TT| we show examples of the learned texture we train our texture discriminator. Figure [I2]
and Figure [I4]show a random sample of textures and meshes produced from our mesh generators.
Here, we demonstrate that our method is able to properly learn the target distribution of obejcts,
both in terms of quality and diversity. In Figure [I3|and Figure [I3] we show textures and meshes
produced when interpolating between random latent vectors passed to our mesh generators. This
interpolation highlights that our learned distribution is robust, such that sampling along a line in latent
space produces high fidelity textures at meshes every step.

References

[1] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d
model repository. arXiv preprint arXiv:1512.03012, 2015.

[2] Kyle Genova, Forrester Cole, Aaron Maschinot, Aaron Sarna, Daniel Vlasic, and William T
Freeman. Unsupervised training for 3d morphable model regression. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 8377-8386, 2018.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770778, 2016.

[4] Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[5] Angjoo Kanazawa, Shubham Tulsiani, Alexei A Efros, and Jitendra Malik. Learning category-
specific mesh reconstruction from image collections. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 371-386, 2018.

[6] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neural 3d mesh renderer. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3907-3916, 2018.

[7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems, pages
1097-1105, 2012.

[8] Hsueh-Ti Derek Liu, Michael Tao, and Alec Jacobson. Paparazzi: Surface editing by way of
multi-view image processing. In SIGGRAPH Asia 2018 Technical Papers, page 221. ACM,
2018.

[9] Hsueh-Ti Derek Liu, Michael Tao, Chun-Liang Li, Derek Nowrouzezahrai, and Alec Jacobson.
Beyond pixel norm-balls: Parametric adversaries using an analytically differentiable renderer.
In ICLR, 2019.

[10] Shichen Liu, Weikai Chen, Tianye Li, and Hao Li. Soft rasterizer: Differentiable rendering for
unsupervised single-view mesh reconstruction. arXiv preprint arXiv:1901.05567, 2019.

[11] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft rasterizer: A differentiable renderer for
image-based 3d reasoning, 2019.

[12] Matthew M Loper and Michael J Black. Opendr: An approximate differentiable renderer. In
European Conference on Computer Vision, pages 154—169. Springer, 2014.

[13] Andrew L. Maas. Rectifier nonlinearities improve neural network acoustic models. 2013.

[14] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th international conference on machine learning (ICML-10), pages
807-814, 2010.

[15] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks, 2015.

[16] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In Infernational Conference on Medical image computing and
computer-assisted intervention, pages 234-241. Springer, 2015.

[17] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing
ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

[18] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang Jiang. Pixel2mesh:
Generating 3d mesh models from single rgb images. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 52-67, 2018.

[19] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona. Caltech-UCSD
Birds 200. Technical Report CNS-TR-2010-001, California Institute of Technology, 2010.

[20] Bing Xu, Naiyan Wang, Tiangi Chen, and Mu Li. Empirical evaluation of rectified activations
in convolutional network, 2015.

Figure 5: Qualitative examples for 3D shape, texture and light prediction. Purple rectangle: Input image. First
to fourth rows: Phong Model. Fifth to seventh rows: Spherical Harmonic Model. First column: Texture and
Light. Second column: Texture. Third column: Light. Forth to Ninth column: Texture from different views.

L) 4

Figure 6: Qualitative comparisons on single image 3D object prediction. First column is the ground-truth
image, the second and third columns are the prediction from our model, the forth and fifth column are results
from SoftRas-Mesh [[10], the last two columns are results from N3MR [6].

9

NN S e o N 3 A

T VN s N e g

*hYHLYCECLCY A
cOONVNOPPION
!"%Qﬂﬁ\-

'O S |

NN — e N T~ —
S g N e J O
A SAYS LA L

ﬂﬂﬁﬂﬂ’ﬂﬁﬂﬂ

. 10
Figure 7: Qualitative results on single image 3D object prediction from different views. The first column is the
ground truth, the rest columns are images where we rotate predictions with different angles.

Figure 8: Light & Texture Separation Study. Purple rectangle: Input image, which are rendered with the same
car model but different lighting directions. Each three columns visualize Texture + Light, Light, Texture.

Figure 9: Light & Texture Separation Study. Purple rect: Input image. Input images are with same light and
texture but vary views. Each three columns visualize Texture + Light, Light.

11

Figure 10: Qualitative results on CUB bird dataset [[19]. The first row shows GT image and mask,
Our predictions and CMR [3] predictions, respectively. The second row shows the learned shape and
texture rendered in multiple views.

12

s il -

Figure 11: Ground Truth Textures. Samples from the distribution of learned textures through which we train
our texture discriminator.

B eSS - wOIme
ll) l Jl. : 3 ‘ J;R' gﬁ'
\ & w3 g oo f

8 =gl
)

[
N e

¢ PR

Figure 12: GAN textures.Random sample of textures produced from our texture generator.

13

3 "Hﬁr B8 S

}\ L:'/‘_,q £
m-@ 'a 4.5 va »l
U

J"
'@-L" ozl

-

2 |
_—

Figure 13: Interpolation of GAN Textures.Textures produced when interpolating between random latent vectors
passed to our texture generator.

14

Figure 14: Rendered GAN samples. Renderings of objects produced by sampling from our mesh generators.

Figure 15: Interpolated GAN samples. Renderings of objects produced by interpolating between random latent
vectors passed to our mesh generators.

	Derivation of DIB-Render
	Rendering Pipeline
	Supported Mesh Attributes
	In-Depth Overview of Experiments
	Predicting 3D Objects from Single Images: Geometry and Color
	Predicting 3D Objects from Single Images: Geometry, Texture and Lighting
	Real Images
	3D GAN

	More Results
	Single Image 3D Reconstruction
	Predicting 3D Objects from Single Images: Geometry, Texture and Light
	Real Images
	3D GAN

